Nested numerical simulations of ionospheric plasma density structures associated with nonlinear evolution of the Rayleigh–Taylor (RT) instability in equatorial spread F (ESF) are presented. The numerical implementation of the nested model uses a spatial discretization with a C grid staggering configuration where normal velocities of ions and electrons are staggered one-half grid length from the density of charged particles. The advection of charged particles is computed with a fifth order accurate in space weighted essentially nonoscillatory (WENO) scheme. The continuity equation is integrated using a third-order Runge–Kutta (RK) time integration scheme. The equation for the electric potential is solved at each time step with a multigrid method. For the limited area and nested simulations, the lateral boundary conditions are treated via implicit relaxation applied in buffer zones where the density of charged particles for each nest is relaxed to that obtained from the parent domain. The high resolution in targeted regions offered by the nested model was able to resolve secondary RT instabilities, and to improve the resolution of the primary RT bubble compared to the coarser large domain model. The computational results are validated by conducting a large domain simulation where the resolution is increased everywhere.

References

References
1.
Zhou
,
Y.
,
Remington
,
B. A.
,
Robey
,
H. F.
,
Cook
,
A. W.
,
Glendinning
,
S. G.
,
Dimits
,
A.
,
Buckingham
,
A. C.
,
Zimmerman
,
G. B.
,
Burke
,
E. W.
,
Peyser
,
T. A.
,
Cabot
,
W.
, and
Eliason
,
D.
,
2003
, “
Progress in Understanding Turbulent Mixing Induced by Rayleigh–Taylor and Richtmyer–Meshkov Instabilities
,”
Phys. Plasmas
,
10
, pp.
1883
1896
.10.1063/1.1560923
2.
Tang
,
W.
, and
Mahalov
,
A.
,
2013
, “
Stochastic Lagrangian Dynamics for Charged Flows in the E–F Regions of Ionosphere
,”
Phys. Plasmas Am. Inst. Phys.
,
20(3)
,
032305
.10.1063/1.4794735
3.
Berkner
,
L. V.
, and
Wells
,
H. W.
,
1934
, “
F Region Ionosphere—Investigation at Low Latitudes
,”
Terres. Magn.
,
39
, pp.
215
230
.10.1029/TE039i003p00215
4.
Woodman
,
R. F.
, and
La Hoz
,
C.
,
1976
, “
Radar Observation of F Region Equatorial Irregularities
,”
Geophys Res.
,
81
, pp.
5447
5466
.10.1029/JA081i031p05447
5.
Basu
,
S.
,
Basu
,
S.
,
Aarons
,
J.
,
McClure
,
J. P.
, and
Cousins
,
M. D.
,
1978
, “
On the Coexistence of Kilometer- and Meter-Scale Irregularities in the Nighttime Equatorial F Region
,”
J. Geophys Res
,
83
, pp.
4219
4226
.10.1029/JA083iA09p04219
6.
Fejer
,
B. G.
, and
Kelley
,
M. C.
,
1980
, “
Ionospheric Irregularities
,”
Rev. Geophys.
,
18
, pp.
401
454
.10.1029/RG018i002p00401
7.
Kelley
,
M. C.
,
Larson
,
M. F.
,
La Hoz
,
C.
, and
McClure
,
J. P.
,
1981
, “
Gravity Wave Initiation of Equatorial Spread F: A Case Study
,”
J. Geophys Res.
,
86
, pp.
9087
9100
.10.1029/JA086iA11p09087
8.
Tsunoda
,
R. T.
,
1983
, “
On the Generation and Growth of Equatorial Backscatter Plume. Structuring of the Westwalls of Upwelling
,”
J. Geophys. Res.
,
88
, pp.
4869
4874
.10.1029/JA088iA06p04869
9.
Scannapieco
,
A. J.
, and
Ossakow
,
S. L.
,
1976
, “
Nonlinear Equatorial Spread F
,”
Geophys. Res. Lett.
,
3
, pp.
451
454
.10.1029/GL003i008p00451
10.
Ossakow
,
S. L.
,
1981
, “
Spread F Theories. A Review
,”
J. Atmos. Terr. Phys.
,
43
, pp.
437
452
.10.1016/0021-9169(81)90107-0
11.
Raghavarao
,
R.
,
Sekar
,
R.
, and
Suhasini
,
R.
,
1992
, “
Nonlinear Numerical Simulation of Equatorial Spread F: Effects of Winds and Electric Fields
,”
Adv. Space Res.
,
12
, pp.
227
230
.10.1016/0273-1177(92)90061-2
12.
Sekar
,
R.
,
Suhasini
,
R.
, and
Raghavarao
,
R.
,
1994
, “
Effects of Vertical Winds and Electric Fields in the Nonlinear Evolution of Equatorial Spread F
,”
J. Geophys. Res.
,
99
, pp.
2205
2213
.10.1029/93JA01849
13.
Huang
,
C. S.
, and
Kelley
,
M. C.
,
1996
, “
Nonlinear Evolution of Equatorial Spread F, 2. Gravity Wave Seeding of Rayleigh-Taylor Instability
,”
J. Geophys. Res.
,
101
, pp.
293
302
.10.1029/95JA02210
14.
Huang
,
C. S.
, and
Kelley
,
M. C.
,
1996
, “
Nonlinear Evolution of Equatorial Spread F, 4. Gravity Waves, Velocity Shear and Day-to-Day Variability
,”
J. Geophys Res
,
101
, pp.
24521
24532
.10.1029/96JA02332
15.
Alam
,
K.
,
de Paula
,
E. R.
, and
Bertoni
,
F. C. P.
,
2004
, “
Effects of the Fringe Field of Rayleigh–Taylor Instability in the Equatorial E and Valley Regions
,”
J. Geophys. Res.
,
109
,
12310
.10.1029/2003JA010364
16.
Zalesak
,
S. T.
,
1979
, “
Fully Multidimensional Flux-Corrected Transport Algorithms for Fluids
,”
J. Comput. Phys.
,
31
(
3
), pp.
335
362
.10.1016/0021-9991(79)90051-2
17.
Herrmann
,
M.
, and
Blanquart
,
G.
,
2006
, “
Flux Corrected Finite Volume Scheme for Preserving Scalar Boundedness in Reacting Large-Eddy Simulations
,”
AIAA J.
,
44
(
12
), pp.
2879
2886
.10.2514/1.18235
18.
Huba
,
J. D.
,
Joyce
,
G.
, and
Fedder
,
J.A.
,
2000
, “
Sami2 is Another Model of the Ionosphere (SAMI2): A New Low-latitude Ionosphere Model
,”
J. Geophys. Res.
,
105
, pp.
23035
23053
.10.1029/2000JA000035
19.
Mahalov
,
A.
, and
Moustaoui
,
M.
,
2009
, “
Vertically Nested Nonhydrostatic Model for Multi-Scale Resolution of Flows in the Upper Troposphere and Lower Stratosphere
,”
J. Comput. Phys.
,
228
, pp.
1294
1311
.10.1016/j.jcp.2008.10.030
20.
Jiang
,
G.-S.
, and
Peng
,
D.
,
2000
, “
Weighted ENO Schemes for Hamilton Jacobi Equations
,”
SIAM J. Sci. Comput.
,
21
(
6
), pp.
2126
2143
.10.1137/S106482759732455X
You do not currently have access to this content.