The paper reports on the prediction of the turbulent flow field around a three-dimensional, surface mounted, square-sectioned cylinder at Reynolds numbers in the range 104–105. The effects of turbulence are accounted for in two different ways: by performing large-eddy simulations (LES) with a Smagorinsky model for the subgrid-scale motions and by solving the unsteady form of the Reynolds-averaged Navier–Stokes equations (URANS) together with a turbulence model to determine the resulting Reynolds stresses. The turbulence model used is a two-equation, eddy-viscosity closure that incorporates a term designed to account for the interactions between the organized mean-flow periodicity and the random turbulent motions. Comparisons with experimental data show that the two approaches yield results that are generally comparable and in good accord with the experimental data. The main conclusion of this work is that the URANS approach, which is considerably less demanding in terms of computer resources than LES, can reliably be used for the prediction of unsteady separated flows provided that the effects of organized mean-flow unsteadiness on the turbulence are properly accounted for in the turbulence model.

References

1.
Blevins
,
R. D.
,
2009
, “
Models for Vortex-Induced Vibration of Cylinders Based on Measured Forces
,”
ASME J. Fluids Eng.
,
131
(
10
), p
101203
.10.1115/1.3222906
2.
Mahir
,
N.
,
2009
, “
Three-Dimensional Flow Around a Square Cylinder Near a Wall
,”
Ocean Eng.
,
36
(
5
), pp.
357
367
.10.1016/j.oceaneng.2009.01.002
3.
Ozkol
,
U.
,
Wark
,
C.
, and
Fabris
,
D.
,
2007
, “
Mean and Fluctuating Velocity Characteristics of a Separated Shear Layer Past a Surface Mounted Block
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
200
209
.10.1115/1.2409359
4.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
5.
Lim
,
H. C.
,
Thomas
,
T. G.
, and
Castro
,
I. P.
,
2009
. “
Flow Around a Cube in a Turbulent Boundary Layer: LES and Experiment
,”
J. Wind Eng. Ind. Aerodyn.
,
97
(
2
), pp.
96
109
.10.1016/j.jweia.2009.01.001
6.
Hussein
,
H. J.
, and
Martinuzzi
,
R. J.
,
1996
, “
Energy Balance for Turbulent Flow Around a Surface Mounted Cube Placed in a Channel
,”
Phys. Fluids
,
8
(
3
), pp.
764
780
.10.1063/1.868860
7.
Srinivas
,
Y.
,
Biswas
,
G.
,
Parihar
,
A. S.
, and
Ranjan
,
R.
,
2006
, “
Large-Eddy Simulation of High Reynolds Number Turbulent Flow Past a Square Cylinder
,”
J. Eng. Mech.
,
132
(
3
), pp.
327
335
.10.1061/(ASCE)0733-9399(2006)132:3(327)
8.
Kim
,
Y.
, and
Kanda
,
J.
,
2010
, “
Characteristics of Aerodynamic Forces and Pressures on Square Plan Buildings With Height Variation
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
8–9
), pp.
449
465
.10.1016/j.jweia.2010.02.004
9.
Bruno
,
L.
,
Fransos
,
D.
,
Coste
,
N.
, and
Bosco
,
A.
,
2011
, “
3D Flow Around a Rectangular Cylinder: A Computational Study
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
6–7
), pp.
263
276
.10.1016/j.jweia.2009.10.005
10.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
(
3
), pp.
1
24
.10.1088/1367-2630/6/1/035
11.
Krajnovic
,
S.
, and
Davidson
,
L.
,
2002
, “
Large-Eddy Simulation of the Flow Around a Bluff Body
,”
AIAA J.
,
40
(
5
), pp.
927
936
.10.2514/3.15142
12.
Sohankar
,
A.
,
2006
, “
Flow Over a Bluff Body From Moderate to High Reynolds Numbers Using Large Eddy Simulation
,”
Comput. Fluid.
,
35
(
10
), pp.
1154
1168
.10.1016/j.compfluid.2005.05.007
13.
Oka
,
S.
and
Ishihara
,
T.
,
2009
, “
Numerical Study of Aerodynamic Characteristics of a Square Prism in Uniform Flow
,”
J. Wind Eng. Ind. Aerodyn.
,
97
(
11–12
), pp.
548
559
.10.1016/j.jweia.2009.08.006
14.
Ramesh
,
V.
,
Vengadesan
,
S.
, and
Narasimhan
,
J. L.
,
2006
, “
3D Unsteady RANS Simulation of Turbulent Flow Over Bluff Body by Non-Linear Model
,”
Int. J. Num. Meth. Heat Fluid Flow
,
16
(
6
), pp.
660
673
.10.1108/09615530610679048
15.
Smith
,
H. D.
, and
Foster
D. L.
,
2005
, “
Modeling of Flow Around a Cylinder Over a Scoured Bed
,”
J. Waterway Port Coast Ocean Eng.
,
131
(
1
), pp.
14
24
.10.1061/(ASCE)0733-950X(2005)131:1(14)
16.
Bosch
,
G.
, and
Rodi
,
W.
,
1998
, “
Simulation of Vortex Shedding Past a Square Cylinder With Different Turbulence Models
,”
Int. J. Num. Meth. Fluids
,
28
(
4
), pp.
601
616
.10.1002/(SICI)1097-0363(19980930)28:4<601::AID-FLD732>3.0.CO;2-F
17.
Younis
,
B. A.
, and
Przulj
,
V. P.
,
2006
, “
Computation of Turbulent Vortex Shedding
,”
Computat. Mech.
,
37
(
5
), pp.
408
425
.10.1007/s00466-005-0713-2
18.
Younis
,
B. A.
, and
Zhou
,
Y.
,
2006
, “
Accounting for Mean-Flow Periodicity in Turbulence Closures
,”
Phys. Fluids
,
18
(
1
), p.
018102
.10.1063/1.2166458
19.
Durao
,
D.
,
Heitor
,
M.
, and
Pereira
,
J.
,
1988
, “
Measurements of Turbulent and Periodic Flows Around a Square Cross-Section Cylinder
,”
Experiment. Fluids
,
6
(
5
), pp.
298
304
.10.1007/BF00538820
20.
Przulj
,
V. P.
,
1998
, “
Computational Modelling of Vortex Shedding Flows
” Ph.D. thesis, City University, London.
21.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimating and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
22.
Vickery
,
B. J.
,
1966
, “
Fluctuating Lift and Drag on a Long Cylinder of Square Cross-Section in a Turbulent Stream
,”
J. Fluid Mech.
,
25
(
3
), pp.
481
494
.10.1017/S002211206600020X
23.
Rodi
,
W.
,
Ferziger
,
J. H.
,
Breuer
,
M.
, and
Pourquie
,
M.
,
1997
, “
Status of Large Eddy Simulation: Results of a Workshop
,”
ASME J. Fluids Eng.
,
119
(
2
), pp.
248
262
.10.1115/1.2819128
24.
Xu
,
Y.
, and
Dalton
,
C.
,
2001
, “
Computation of Force on a Cylinder in a Shear Flow
,”
J. Fluids Struct.
,
15
(
7
), pp.
941
954
.10.1006/jfls.2001.0390
25.
Castro
,
I. P.
, and
Graham
,
J. M. R.
,
1999
, “
Computational Wind Engineering: The Way Ahead?
,”
Proc. Inst. Civil Eng. Struct.
,
134
(
3
), pp.
275
277
.10.1680/istbu.1999.31569
26.
Abrishamchi
,
A.
, and
Younis
,
B. A.
,
2012
, “
LES and URANS Predictions of the Hydrodynamic Loads on a Tension-Leg Platform
,”
J. Fluids Struct.
,
28
(
1
), pp.
244
262
.10.1016/j.jfluidstructs.2011.10.002
You do not currently have access to this content.