This article presents Large Eddy Simulations of thermal boundary layer spatial development in a low-Mach number turbulent channel flow. A coupling between isothermal biperiodic channel and anisothermal open channel is done to obtain a fully developed turbulent inlet. The interaction between a high temperature gradient and a turbulent flow is studied during the thermal boundary layer development. Turbulence and temperature quantities are analyzed for both streamwise and wall-normal directions. The results show how the asymmetrical heating modifies the velocity of the flow. The correlation between turbulence and heat transfers is studied. The mean and the fluctuation profiles are found to be asymmetrical. They evolve along the channel and are perturbed by the thermal gradient. Fluctuation destruction and creation areas in the length of the channel are highlighted.

References

References
1.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to Reτ = 590
,”
Phys. Fluids
,
11
(
4
), pp.
943
945
.10.1063/1.869966
2.
Nicoud
,
F.
,
1998
, “
DNS of Channel Flow With Variable Properties
,” Center for Turbulent Research Annual Research Briefs, pp.
289
309
.
3.
Nicoud
,
F.
,
1999
, “
Conservative High-Order Finite-Difference Schemes for Low-Mach Number Flows
,”
J. Comput. Phys.
,
158
, pp.
71
97
.10.1006/jcph.1999.6408
4.
Kawamura
,
H.
,
Abe
,
H.
, and
Matsuo
,
Y.
,
1999
, “
DNS of Turbulent Heat Transfer in Channel Flow With Respect to Reynolds and Prandtl Number Effects
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
196
207
.10.1016/S0142-727X(99)00014-4
5.
Kawamura
,
H.
,
Abe
,
H.
, and
Shingai
,
K.
,
2000
, “
DNS of Turbulence and Heat Transport in a Channel Flow With Different Reynolds and Prandtl Numbers and Boundary Conditions
,”
Proceedings of the 3rd International Symposium on Turbulence, Heat and Mass Transfer
,
Y.
Nagano
,
K.
Hanjalic
, and
T.
Tsuji
, eds.,
Aichi Shuppan
,
Tokyo
, pp.
15
32
.
6.
Lessani
,
B.
, and
Papalexandris
,
M. V.
,
2006
, “
Time-Accurate Calculation of Variable Density Flows With Strong Temperature Gradients and Combustion
,”
J. Comput. Phys.
,
212
, pp.
218
246
.10.1016/j.jcp.2005.07.001
7.
Lessani
,
B.
, and
Papalexandris
,
M. V.
,
2007
, “
Numerical Study of Turbulent Channel Flow With Strong Temperature Gradients
,”
Int. J. Numer. Methods Heat Fluid Flow
,
18
, pp.
545
556
.10.1108/09615530810853727
8.
Wang
,
W.
, and
Pletcher
,
R.
,
1996
, “
On the Large Eddy Simulation of a Turbulent Channel Flow With Significant Heat Transfer
,”
Phys. Fluids
,
8
(
12
), pp.
3354
3366
.10.1063/1.869110
9.
Aulery
,
F.
,
Baux
,
Y.
,
Toutant
,
A.
, and
Bataille
,
F.
,
2011
, “
Thermal Boundary Condition Influence on Biperiodic Channel Flow With High Thermal Gradient
,”
Mach. Dyn. Res.
,
35
(
1
), pp.
19
28
.
10.
Serra
,
S.
,
Toutant
,
A.
, and
Bataille
,
F.
,
2012
, “
Thermal Large Eddy Simulation in a Very Simplified Geometry of a Solar Receiver
,”
Heat Transfer Eng.
,
33
(
6
), pp.
505
524
.10.1080/01457632.2012.624856
11.
Serra
,
S.
,
Toutant
,
A.
, and
Bataille
,
F.
,
2012
, “
High Temperature Gradient Effect on a Turbulent Channel Flow Using Thermal Large-Eddy Simulation in Physical and Spectral Spaces
,”
J. Turbul.
,
13
(
49
), pp.
1
25
. 10.1080/14685248.2012.728000
12.
Serra
,
S.
,
Toutant
,
A.
,
Bataille
,
F.
, and
Zhou
,
Y.
,
2012
, “
Turbulent Kinetic Energy Spectrum in Very Anisothermal Flows
,”
Phys. Lett. A
,
376
(
45
), pp.
3177
3184
.10.1016/j.physleta.2012.08.005
13.
Zhou
,
Y.
,
2010
, “
Renormalization Group Theory for Fluid and Plasma Turbulence
,”
Phys. Rep.
,
488
(
1
), pp.
1
49
.10.1016/j.physrep.2009.04.004
14.
Zhou
,
Y.
, and
Oughton
,
S.
,
2011
, “
Nonlocality and the Critical Reynolds Numbers of the Minimum State Magnetohydrodynamic Turbulence
,”
Phys. Plasmas
,
18
(
7
), p.
072304
.10.1063/1.3606473
15.
Brillant
,
G.
,
Bataille
,
F.
, and
Ducros
,
F.
,
2004
, “
Large-Eddy Simulation of a Turbulent Boundary Layer With Blowing
,”
Theor. Comput. Fluid Dyn.
,
17
(
5–6
), pp.
433
443
.10.1007/s00162-004-0110-z
16.
Brillant
,
G.
,
Husson
,
S.
, and
Bataille
,
F.
,
2005
, “
Large Eddy Simulations of Heat and Mass Transfers in Case of Non Isothermal Blowing
,”
Engineering Turbulence Modelling and Experiments
, Vol.
6
,
W.
Rodi
and
M.
Mulas
, eds.,
ERCOFTAC
,
London
, pp.
751
760
.
17.
Brillant
,
G.
,
Husson
,
S.
,
Bataille
,
F.
, and
Ducros
,
F.
,
2008
, “
Study of the Blowing Impact on a Hot Turbulent Boundary Layer Using Thermal Large Eddy Simulation
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1670
1678
.10.1016/j.ijheatfluidflow.2008.06.011
18.
Brillant
,
G.
,
Husson
,
S.
, and
Bataille
,
F.
,
2008
, “
Experimental Study of the Blowing Impact on a Hot Turbulent Boundary Layer
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1996
2005
.10.1016/j.ijheatmasstransfer.2007.06.022
19.
Toutant
,
A.
, and
Bataille
,
F.
,
2012
, “
Turbulence Statistics in a Fully Developed Channel Flow Submitted to a High Temperature Gradient
,”
Int. J. Therm. Sci.
(accepted).
20.
Hattori
,
H.
,
Houra
,
T.
, and
Nagano
,
Y.
,
2007
, “
Direct Numerical Simulation of Stable and Unstable Turbulent Thermal Boundary Layers
,”
Int. J. Heat Fluid Flow
,
28
, pp.
1261
1271
.10.1016/j.ijheatfluidflow.2007.04.012
21.
Li
,
Q.
,
Schlatter
,
P.
,
Brandt
,
L.
, and
Henningson
,
D. S.
,
2009
, “
DNS of a Spatially Developing Turbulent Boundary Layer With Passive Scalar Transport
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
916
929
.10.1016/j.ijheatfluidflow.2009.06.007
22.
Araya
,
G.
, and
Castillo
,
L.
,
2012
, “
DNS of Turbulent Thermal Boundary Layers Up to Reθ = 2300
,”
Int. J. Heat Mass Transfer
,
55
, pp.
4003
4019
.10.1016/j.ijheatmasstransfer.2012.03.038
23.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
,
1998
, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comput. Phys.
,
140
(
2
), pp.
233
258
.10.1006/jcph.1998.5882
24.
Hans
,
V. S.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2010
, “
Heat Transfer and Friction Factor Correlations for a Solar Air Heater Duct Roughened Artificially With Multiple V-Ribs
,”
Solar Energy
,
84
(
6
), pp.
898
911
.10.1016/j.solener.2010.02.004
25.
Wu
,
J. M.
, and
Tao
,
W. Q.
,
2012
, “
Effect of Longitudinal Vortex Generator on Heat Transfer in Rectangular Channels
,”
Appl. Therm. Eng.
,
37
(
0
), pp.
67
72
.10.1016/j.applthermaleng.2012.01.002
26.
Daguenet-Frick
,
X.
,
Foucaut
,
J.-M.
,
Coudert
,
S.
,
Toutant
,
A.
, and
Olalde
,
G.
,
2012
, “
Experimental Analysis of the Turbulent Flow Behavior of a Textured Surface Proposed for Asymmetric Heat Exchangers
,”
Flow, Turbul. Combust.
,
89
, pp.
149
169
.10.1007/s10494-012-9387-y
27.
Colleoni
,
A.
,
Toutant
,
A.
,
Olalde
,
G.
, and
Foucaut
,
J.-M.
,
2013
, “
Optimization of Winglet Vortex Generators Combined With Riblets for Wall/Fluid Heat Exchange Enhancement
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1092
1100
.10.1016/j.applthermaleng.2012.08.036
28.
Paolucci
,
S.
,
1982
, “
On the Filtering of Sound from the Navier-Stokes Equations
,” Tech. Rep. SAND82-8257.
29.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
,
2nd ed.
,
McGraw Hill
,
New York
.
30.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
, pp.
183
200
.10.1023/A:1009995426001
31.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With Primitives Equations
,”
Mon. Weather Rev.
,
93
, pp.
99
165
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
32.
CEA
,
2012
, “Trio U Website Project,” http://www-trio-u.cea.fr
33.
Châtelain
,
A.
,
Ducros
,
F.
, and
Métais
,
O.
,
2004
, “
LES of Turbulent Heat Transfer: Proper Convection Numerical Schemes for Temperature Transport
,”
Int. J. Numer. Methods Fluids
,
44
(
9
), pp.
1017
1044
.10.1002/fld.691
34.
Van Driest
,
E. R.
,
1951
, “
Turbulent Boundary Layer in Compressible Fluids
,”
J. Aerosp. Sci.
,
18
(
3
), pp.
145
160
.
35.
Nicoud
,
F.
, and
Bradshaw
,
P.
,
2000
, “
A Velocity Transformation for Heat and Mass Transfer
,”
Phys. Fluids
,
12
(
1
), p.
237238
.10.1063/1.870252
36.
Simpson
,
R. L.
,
1970
, “
Characteristics of Turbulent Boundary Layers at Low Reynolds Numbers With and Without Transpiration
,”
J. Fluid Mech.
,
42
, pp.
769
802
.10.1017/S002211207000160X
37.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
4th ed.
,
Wiley
,
New York
.
You do not currently have access to this content.