Flows over airfoils and blades in rotating machinery for unmanned and microaerial vehicles, wind turbines, and propellers consist of different flow regimes. A laminar boundary layer near the leading edge is often followed by a laminar separation bubble with a shear layer on top of it that experiences transition to turbulence. The separated turbulent flow then reattaches and evolves downstream from a nonequilibrium turbulent boundary layer to an equilibrium one. Typical Reynolds-averaged Navier–Stokes (RANS) turbulence modeling methods were shown to be inadequate for such laminar separation bubble flows (Spalart and Strelets, 2000, “Mechanisms of Transition and Heat Transfer in a Separation Bubble,” J. Fluid Mech., 403, pp. 329–349). Direct numerical simulation (DNS) is the most reliable but is also the most computationally expensive alternative. This work assesses the capability of large eddy simulations (LES) to reduce the resolution requirements for such flows. Flow over a flat plate with suitable velocity boundary conditions away from the plate to produce a separation bubble is considered. Benchmark DNS data for this configuration are generated with the resolution of 59 × 106 mesh points; also used is a different DNS database with 15 × 106 points (Spalart and Strelets, 2000, “Mechanisms of Transition and Heat Transfer in a Separation Bubble,” J. Fluid Mech., 403, pp. 329–349). Results confirm that accurate LES are possible using O(1%) of the DNS resolution.

References

References
1.
Hu
,
H.
,
Yang
,
Z.
, and
Igarashi
,
H.
,
2007
, “
Aerodynamic Hysteresis of a Low-Reynolds-Number Airfoil
,”
J. Aircr.
,
44
(
6
), pp.
2083
2085
.10.2514/1.32662
2.
Hain
,
R.
,
Kähler
,
C. J.
, and
Radespiel
,
R.
,
2009
, “
Dynamics of Laminar Separation Bubbles at Low-Reynolds-Number Aerofoils
,”
J. Fluid Mech.
,
630
, pp.
129
153
.10.1017/S0022112009006661
3.
Spedding
,
G.
, and
McArthur
,
J.
,
2010
, “
Span Efficiencies of Wings at Low Reynolds Numbers
,”
J. Aircr.
,
47
(
1
), pp.
120
128
.10.2514/1.44247
4.
Marxen
,
O.
,
Lang
,
M.
, and
Wagner
,
S.
,
2003
, “
A Combined Experimental/Numerical Study of Unsteady Phenomena in a Laminar Separation Bubble
,”
Flow, Turbul. Combust.
,
71
, pp.
133
146
.10.1023/B:APPL.0000014928.69394.50
5.
Spalart
,
P.
, and
Strelets
,
M.
,
2000
, “
Mechanisms of Transition and Heat Transfer in a Separation Bubble
,”
J. Fluid Mech.
,
403
, pp.
329
349
.10.1017/S0022112099007077
6.
Lin
,
J. C. M.
, and
Pauley
,
L.
,
1996
, “
Low-Reynolds-Number Separation on an Airfoil
,”
AIAA J.
,
34
(
8
), pp.
1570
1577
.10.2514/3.13273
7.
Alam
,
M.
, and
Sandham
,
N.
,
2000
, “
Direct Numerical Simulation of ‘Short’ Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
,
410
, pp.
1
28
.10.1017/S0022112099008976
8.
Marxen
,
O.
, and
Rist
,
U.
,
2010
, “
Mean Flow Deformation in a Laminar Separation Bubble: Separation and Stability Characteristics
,”
J. Fluid Mech.
,
660
, pp.
37
54
.10.1017/S0022112010001047
9.
Jones
,
L. E.
,
Sandberg
,
R. D.
, and
Sandham
,
N. D.
,
2008
, “
Direct Numerical Simulations of Forced and Unforced Separation Bubbles on an Airfoil at Incidence
,”
J. Fluid Mech.
,
602
, pp.
175
207
.10.1017/S0022112008000864
10.
Jones
,
L.
,
Sandberg
,
R.
, and
Sandham
,
N.
,
2010
, “
Stability and Receptivity Characteristics of a Laminar Separation Bubble on an Aerofoil
,”
J. Fluid Mech.
,
648
, pp.
257
296
.10.1017/S0022112009993089
11.
Yang
,
Z.
, and
Voke
,
P.
,
2001
, “
Large-Eddy Simulation of Boundary-Layer Separation and Transition at a Change of Surface Curvature
,”
J. Fluid Mech.
,
439
, pp.
305
333
.10.1017/S0022112001004633
12.
Eisenbach
,
S.
, and
Friedrich
,
R.
,
2008
, “
Large-Eddy Simulation of Flow Separation on an Airfoil at a High Angle of Attack and Re = 105 Using Cartesian Grids
,”
Theor. Comput. Fluid Dyn.
,
22
, pp.
213
225
.10.1007/s00162-007-0072-z
13.
Wilson
,
P.
, and
Pauley
,
L.
,
1998
, “
Two- and Three-Dimensional Large-Eddy Simulations of a Transitional Separation Bubble
,”
Phys. Fluids
,
10
, pp.
2932
2940
.10.1063/1.869813
14.
Nagarajan
,
S.
,
Lele
,
S. K.
, and
Ferziger
,
J. H.
,
2007
, “
Leading-Edge Effects in Bypass Transition
,”
J. Fluid Mech.
,
572
, pp.
471
504
.10.1017/S0022112006001893
15.
Lele
,
S. K.
,
1992
, “
Compact Finite Difference Schemes With Spectral Like Resolution
,”
J. Comput. Phys.
,
103
, pp.
16
42
.10.1016/0021-9991(92)90324-R
16.
Nagarajan
,
S.
,
2004
, “
Leading Edge Effects in Bypass Transition
,” Ph.D. thesis, Stanford University, Stanford, CA.
17.
Erlebacher
,
G.
,
Hussaini
,
M.
,
Speciale
,
C.
, and
Zang
,
T.
,
1992
, “
Toward the Large-Eddy Simulation of Compressible Turbulent Flows
,”
J. Fluid Mech.
,
238
, pp.
155
185
.10.1017/S0022112092001678
18.
Sayadi
,
T.
, and
Moin
,
P.
,
2012
, “
Large Eddy Simulation of Controlled Transition to Turbulence
,”
Phys. Fluids
,
24
, p.
114103
.10.1063/1.4767537
19.
Mani
,
A.
,
2012
, “
Analysis and Optimization of Numerical Sponge Layers as a Nonreflective Boundary Treatment
,”
J. Comput. Phys.
,
231
(
2
), pp.
704
716
.10.1016/j.jcp.2011.10.017
20.
Cadieux
,
F.
,
Domaradzki
,
J. A.
,
Sayadi
,
T.
,
Bose
,
T.
, and
Duchaine
,
F.
,
2012
, “
DNS and LES of Separated Flows at Moderate Reynolds Numbers
,”
Proceedings of the 2012 Summer Program, Center for Turbulence Research
,
NASA Ames/Stanford University
,
Stanford, CA
, June 24–July 20, pp.
77
86
.
21.
Domaradzki
,
J. A.
,
Xiao
,
Z.
, and
Smolarkiewicz
,
P. K.
,
2003
, “
Effective Eddy Viscosities in Implicit Large Eddy Simulations of Turbulent Flows
,”
Phys. Fluids
,
15
(
12
), pp.
3890
3893
.10.1063/1.1624610
22.
Domaradzki
,
J. A.
, and
Radhakrishnan
,
S.
,
2005
, “
Effective Eddy Viscosities in Implicit Modeling of Decaying High Reynolds Number Turbulence With and Without Rotation
,”
Fluid Dyn. Res.
,
36
, pp.
385
406
.10.1016/j.fluiddyn.2004.08.004
23.
Bogey
,
C.
, and
Bailly
,
C.
,
2006
, “
Large Eddy Simulations of Transitional Round Jets: Influence of the Reynolds Number on Flow Development and Energy Dissipation
,”
Phys. Fluids
,
18
(
6
), p.
065101
.10.1063/1.2204060
24.
Diamessis
,
P.
,
Lin
,
Y.
, and
Domaradzki
,
J. A.
,
2008
, “
Effective Numerical Viscosity in Spectral Multidomain Penalty Method-Based Simulations of Localized Turbulence
,”
J. Comput. Phys.
,
227
, pp.
8145
8164
.10.1016/j.jcp.2008.05.011
25.
Nagarajan
,
S.
,
Lele
,
S. K.
, and
Ferziger
,
J. H.
,
2003
, “
A Robust High-Order Compact Method for Large Eddy Simulation
,”
J. Comput. Phys.
,
191
, pp.
392
419
.10.1016/S0021-9991(03)00322-X
You do not currently have access to this content.