Fourier analysis of incompressible, homogeneous magnetohydrodynamic (MHD) turbulence produces a model dynamical system on which to perform numerical experiments. Statistical methods are used to understand the results of ideal (i.e., nondissipative) MHD turbulence simulations, with the goal of finding those aspects that survive the introduction of dissipation. This statistical mechanics is based on a Boltzmannlike probability density function containing three “inverse temperatures,” one associated with each of the three ideal invariants: energy, cross helicity, and magnetic helicity. However, these inverse temperatures are seen to be functions of a single parameter that may defined as the “temperature” in a statistical and thermodynamic sense: the average magnetic energy per Fourier mode. Here, we discuss temperature and entropy in ideal MHD turbulence and their use in understanding numerical experiments and physical observations.

References

References
1.
Wootton
,
A. J. W.
,
Tsui
,
H. Y.
, and
Prager
,
S.
,
1992
, “
Edge Turbulence in Tokamaks, Stellarators and Reversed field pinches
,”
Plasma Phys. Control. Fusion
,
34
(
13
), pp.
2023
2030
.10.1088/0741-3335/34/13/035
2.
Lielpeteris
,
J.
, and
Moreau
,
R.
,
1989
,
Liquid Metal Magnetohydrodynamics
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
3.
Falgarone
,
E.
, and
Passot
,
T.
,
2003
,
Turbulence and Magnetic Fields in Astrophysics
,
Springer-Verlag GmbH
,
Berlin, Germany
.
4.
Jones
,
C. A.
,
2011
, “
Planetary Magnetic Fields and Fluid Dynamos
,”
Ann. Rev. Fluid Mech.
,
43
, pp.
583
614
.10.1146/annurev-fluid-122109-160727
5.
Lamb
,
H.
,
1932
,
Hydrodynamics
,
6th ed.
,
Dover Publications
,
Mineola, NY
, p.
663
.
6.
Girimaji
,
S. S.
, and
Zhou
,
Y.
,
1996
, “
Analysis and Modeling of Subgrid Scalar Mixing Using Numerical Data
,”
Phys. Fluids
,
8
(
5
), pp.
1224
1236
.10.1063/1.868894
7.
Lee
,
T. D.
,
1952
, “
On Some Statistical Properties of Hydrodynamical and Magneto-Hydrodynamical Fields
,”
Q. Appl. Math.
,
10
(
1
), pp.
69
74
.
8.
Elsässer
,
W. M.
,
1956
, “
Hydromagnetic Dynamo Theory
,”
Rev. Modern Phys.
,
28
(
2
), pp.
135
163
.10.1103/RevModPhys.28.135
9.
Woltjer
,
L.
,
1958
, “
A Theorem on Force-Free Magnetic Fields
,”
Proc. Natl. Acad. Sci. USA
,
44
(
6
), pp.
489
491
.10.1073/pnas.44.6.489
10.
Shebalin
,
J. V.
,
2006
, “
Ideal Homogeneous Magnetohydrodynamic Turbulence in the Presence of Rotation and a Mean Magnetic Field
,”
J. Plasma Phys.
,
72
(
4
), pp.
507
524
.10.1017/S0022377805004228
11.
Kraichnan
,
R. H.
,
1973
, “
Helical Turbulence and Absolute Equilibrium
,”
J. Fluid Mech.
,
59
(
4
), pp.
745
752
.10.1017/S0022112073001837
12.
Frisch
,
U.
,
Pouquet
,
A.
,
Leorat
,
J.
, and
Mazure
,
A.
,
1975
, “
Possibility of an Inverse Cascade of Magnetic Helicity in Magnetohydrodynamic Turbulence
,”
J. Fluid Mech.
,
68
(
4
), pp.
769
778
.10.1017/S002211207500122X
13.
Shebalin
,
J. V.
,
1982
, “
Anisotropy in MHD Turbulence due to a Mean Magnetic Field
,” Ph.D. thesis, College of William and Mary, Williamsburg, VA.
14.
Shebalin
,
J. V.
,
2009
, “
Plasma Relaxation and the Turbulent Dynamo
,”
Phys. Plasmas
,
16
(
7
), p.
072301
.10.1063/1.3159866
15.
Orszag
,
S. A.
, and
Patterson
,
G. S.
,
1972
, “
Numerical Simulation of Three-Dimensional Homogeneous Isotropic Turbulence
,”
Phys. Rev. Lett.
,
28
(
2
), pp.
76
79
.10.1103/PhysRevLett.28.76
16.
Shebalin
,
J. V.
,
2013
, “
Broken Ergodicity in Magnetohydrodynamic Turbulence
,”
Geophys. Astrophys. Fluid Dyn.
,
107
(
4
), pp.
411
466
.10.1080/03091929.2011.589385
17.
Shebalin
,
J. V.
,
1989
, “
Broken Ergodicity and Coherent Structure in Homogeneous Turbulence
,”
Physica D
,
37
, pp.
173
191
.10.1016/0167-2789(89)90127-9
18.
Shebalin
,
J. V.
,
1994
, “
Broken Symmetry in Ideal Magnetohydrodynamic Turbulence
,”
Phys. Plasmas
,
1
(
3
), pp.
541
547
.10.1063/1.870798
19.
Shebalin
,
J. V.
,
2007
, “
Broken Symmetries and Magnetic Dynamos
,
Phys. Plasmas
,
14
(
10
), p.
102301
.10.1063/1.2780138
20.
Shebalin
,
J. V.
,
2008
, “
The Homogeneous Turbulent Dynamo
,”
Phys. Plasmas
,
15
(
2
), p.
022305
.10.1063/1.2841035
21.
Palmer
,
R. G.
,
1982
, “
Broken Ergodicity
,”
Adv. Phys.
,
31
(
6
), pp.
669
735
.10.1080/00018738200101438
22.
Khinchin
,
A. I.
,
1949
,
Mathematical Foundations of Statistical Mechanics
,
Dover Publications
,
Mineola, NY
, pp.
137
145
.
23.
Shebalin
,
J. V.
,
1996
, “
Absolute Equilibrium Entropy
,”
J. Plasma Phys.
,
56
(
3
), pp.
419
426
.10.1017/S0022377800019383
24.
Taylor
,
J. B.
,
1974
, “
Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields
,”
Phys. Rev. Lett.
,
33
(
19
), pp.
1139
1141
.10.1103/PhysRevLett.33.1139
25.
Shebalin
,
J. V.
,
2013
, “
Broken Ergodicity, Magnetic Helicity and the MHD Dynamo
,”
Geophys. Astrophys. Fluid Dyn.
,
107
(
3
), pp.
353
375
.10.1080/03091929.2012.689299
You do not currently have access to this content.