The radial gap between the impeller tips and volute tongue is an important factor influencing the overall performance and unsteady pressure fields of the pump as turbine (PAT). In this paper, a numerical investigation of the PAT's steady performance with different radial gaps was first performed. The results show that there is an optimal radial gap for a PAT to achieve its highest efficiency. An analysis of the PAT's unsteady pressure fields indicates that the rotorstator interaction of a rotating impeller and stationery volute would cause high frequency unsteady pulsation within the volute and low frequency unsteady pressure pulsation within the impeller. The high frequency unsteady pressure pulsation would propagate through the PAT's flow channel. Thus, the unsteady pressure field within the impeller is the combined effect of these two kinds of pressure pulsations. The unsteady pressure pulsation within the outlet pipe is mainly caused by the propagation of unsteady pressure formed within the volute. With the increase of the radial gap, the amplitude of high frequency unsteady pressure pulsation within the volute caused by the rotor-stator interaction is decreased, while the amplitude of the low frequency unsteady pressure pulsation caused by the rotor-stator interaction within the impeller remains unchanged.

References

References
1.
Yao
,
L.
,
Liu
,
B.
, and
Wu
,
Z. X.
,
2007
, “
Present and Future Power Generation in China
,”
Nucl. Eng. Des.
,
237
, pp.
1468
1473
.10.1016/j.nucengdes.2007.02.003
2.
Raja
,
W.
, and
Piazza
,
R. W.
,
1981
, “
Reverse Running Centrifugal Pumps as Hydraulic Power Recovery Turbines for Sea Water Reverse Osmosis Systems
,”
Desalination
,
38
, pp.
123
134
.10.1016/S0011-9164(00)86054-3
3.
van Antwerpen
,
H. J.
,
Greyvenstein
,
G. P.
,
2005
, “
Use of Turbines for Simultaneous Pressure Regulation and Recovery in Secondary Cooling Water Systems in Deep Mines
,”
Energy Convers. Manage.
,
46
, pp.
563
575
.10.1016/j.enconman.2004.04.006
4.
Williams
,
A. A.
, and
Simpson
,
R.
,
2009
, “
Pico Hydro-Reducing Technical Risks for Rural Electrification
,”
J. Renewable Energy
,
34
, pp.
1986
1991
.10.1016/j.renene.2008.12.011
5.
Singh
,
P.
, and
Nestman
,
F.
,
2010
, “
An Optimization Routine on a Prediction and Selection Model for the Turbine Operation of Centrifugal Pumps
,”
Exp. Therm. Fluid Sci.
,
34
, pp.
152
164
.10.1016/j.expthermflusci.2009.10.004
6.
Derakhshan
,
S.
, and
Nourbakhsh
,
A.
,
2008
, “
Experimental Study of Characteristic Curves of Centrifugal Pumps Working as Turbines in Different Specific Speeds
,”
Exp. Therm. Fluid Sci.
,
32
, pp.
800
807
.10.1016/j.expthermflusci.2007.10.004
7.
Yang
,
S. S.
,
Derakhshan
,
S.
, and
Kong
,
F. Y.
,
2012
, “
Theoretical, Numerical and Experimental Prediction of Pump as Turbine Performance
,”
J. Renewable Energy
,
48
, pp.
507
513
.10.1016/j.renene.2012.06.002
8.
Williams
,
A. A.
,
1994
, “
The Turbine Performance of Centrifugal Pumps: A Comparison of Prediction Methods
,”
Proc. Inst. Mech. Eng., Part A
,
208
(
1
), pp.
59
66
.10.1243/PIME_PROC_1994_208_009_02
9.
Derakhshan
,
S.
, and
Mohammadi
,
B.
,
2009
, “
Efficiency Improvement of Centrifugal Reverse Pumps
,”
ASME J. Fluids Eng.
,
131
, pp.
1
9
.10.1115/1.3059700
10.
Yang
,
S. S.
,
Kong
,
F. Y.
, and
Fu
,
J. H.
,
2012
, “
Numerical Research on Effects of Splitter Blades to the Influence of Pump as Turbine
,”
Int. J. Rotating Mach.
,
2012
, pp.
1
10
.10.1155/2012/142595
11.
Yang
,
S. S.
,
Kong
,
F. Y.
, and
Chen
,
H.
,
2012
, “
Effects of Blade Wrap Angle Influencing Pump as Turbine
,”
ASME J. Fluids Eng.
,
134
, pp.
1
8
.10.1115/1.4006677
12.
Yang
,
S. S.
,
Kong
,
F. Y.
, and
Chen
,
B.
,
2011
, “
Research on Volute Design Method of Pump as Turbine Using CFD
,”
Int. Agric. Eng. J.
,
20
(
3
), pp.
1
7
.
13.
Carlos
,
S. M.
,
Jesús, M. F O.
, and
Katia
,
M. A. D.
,
2011
, “
Numerical Modeling and Flow Analysis of a Centrifugal Pump Running as a Turbine: Unsteady Flow Structures and Its Effects on the Global Performance
,”
Int. J. Numer. Methods Fluids
,
65
, pp.
542
562
.10.1002/fld.2201
14.
Kitano
,
M.
,
2005
, “
Numerical Study of Unsteady Flow in a Centrifugal Pump
,”
ASME J. Turbomach.
,
127
, pp.
363
371
.10.1115/1.1776587
15.
Kaupert
,
K. A.
, and
Staubli
,
T.
,
1999
, “
The Unsteady Pressure Field in a High Specific Speed Centrifugal Pump Impeller—PartI: Influence of Volute
,”
ASME J. Fluids Eng.
,
121
, pp.
621
626
.10.1115/1.2823514
16.
Spence
,
R.
, and
Purdom
,
T.
,
2003
, “
Numerical Prediction of Transient Loadings on Multistage Pump Impellers
,”
Advances of CFD in Fluid Machinery Design
,
Institute of Mechanical Engineers
,
London
, pp.
1
10
.
17.
Kaupert
,
K.
, and
Staubli
,
T.
,
1999
, “
The Unsteady Pressure Field in a High Specific Speed Centrifugal Pump Impeller—Part II: Transient Hysteresis in the Characteristic
,”
ASME J. Fluids Eng.
,
121
, pp.
627
632
.10.1115/1.2823515
18.
Yang
,
S.-S.
,
Kong
,
F.-Y.
,
Qu
,
X.-Y.
, and
Jiang
,
W.-M.
,
2012
, “
Influence of Blade Number on the Performance and Pressure Pulsations in a Pump Used as a Turbine
,”
ASME J. Fluids Eng.
,
134
, pp.
1
10
.10.1115/1.4007810
19.
Help Navigator,
2009
, “
ANSYS CFX, Release 12.0, CFX-Solver Modeling Guide
.”
20.
Wang
,
F. J.
,
2004
,
Computational Fluid Dynamics Analysis—CFD Principles and Application
,
Tsinghua University Press
,
Beijing
, Chap. 4.6.
You do not currently have access to this content.