A large eddy simulation (LES) of an incompressible spatially developing circular jet at a Reynolds number of 10,000 is performed. The shear-improved Smagorinsky model (Lévêque et al., 2007, “A Shear-Improved Smagorinsky Model for the Large-Eddy Simulation of Wall-Bounded Turbulent Flows,” J. Fluid Mech., 570, pp. 491–502) is used for the resolution of the subgrid stress tensor within the filtered three-dimensional unsteady Navier–Stokes equations. Higher-order spatial and temporal discretization schemes are used for capturing the details of the turbulent flow field. With the help of instantaneous and time-averaged flow data, the spatial transition from the laminar state to the turbulent is analyzed. Flow structures are visualized using isosurfaces of the Q-criterion. Instantaneous flow patterns show single tearing and multiple pairing processes. Tracing individual vortex rings over a longer time period, a detailed understanding of the vortex interaction is revealed. The observed trends and the length of the potential core are in conformity with the findings of earlier experiments. The time-averaged axial velocity profile shows that the jet attains self-similarity and the computed profile matches well with the experimental results of Hussein et al. (1994, “Velocity Measurements in a High-Reynolds-Number, Momentum-Conserving, Axisymmetric, Turbulent Jet,” J. Fluid Mech., 258, pp. 31–75). The centerline decay of the velocity and entrainment rate are in agreement with published experiments. The Reynolds stress components u'u'¯, v'v'¯, and u'v'¯ and the third-order velocity moment are in good agreement with thr experimental results, thus confirming the validity of the present simulation.

References

References
1.
Crow
,
S. C.
, and
Champagne
,
F. H.
,
1971
, “
Orderly Structure in Jet Turbulence
,”
J. Fluid Mech.
,
48
, pp.
547
591
.10.1017/S0022112071001745
2.
Petersen
,
R. A.
,
1978
, “
Influence of Wave Dispersion on Vortex Pairing in a Jet
,”
J. Fluid Mech.
,
89
(
3
), pp.
469
495
.10.1017/S0022112078002694
3.
Yule
,
A. J.
,
1978
, “
Large-Scale Structure in the Mixing Layer of a Round Jet
,”
J. Fluid Mech.
,
89
, pp.
413
432
.10.1017/S0022112078002670
4.
Lau
,
J. C.
, and
Fisher
,
M. J.
,
1975
, “
The Vortex Sheet Structure of Turbulent Jets
,”
J. Fluid Mech.
,
67
(
1
), pp.
299
377
.10.1017/S0022112075000328
5.
Davis
,
M. R.
, and
Davies
,
P. O. A. L.
,
1979
, “
Shear Fluctuations in a Turbulent Jet Shear Layer
,”
J. Fluid Mech.
,
93
, pp.
281
303
.10.1017/S0022112079001890
6.
Liepmann
,
D.
, and
Gharib
,
M.
,
1992
, “
The Role of Streamwise Vorticity in the Near-Field Entrainment of Round Jets
,”
J. Fluid Mech.
,
245
, pp.
643
668
.10.1017/S0022112092000612
7.
Hussein
,
H. J.
,
Capp
,
S. P.
, and
George
,
W. K.
,
1994
, “
Velocity Measurements in a High-Reynolds-Number, Momentum-Conserving, Axisymmetric, Turbulent Jet
,”
J. Fluid Mech.
,
258
, pp.
31
75
.10.1017/S002211209400323X
8.
Wygnanski
,
I.
, and
Fiedler
,
H.
,
1969
, “
Some Measurements in the Self-Preserving Jet
,”
J. Fluid Mech.
,
38
(
3
), pp.
577
612
.10.1017/S0022112069000358
9.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
10.
Townsend
,
A. A.
,
1956
,
The Structure of Turbulent Shear Flow
,
Cambridge University Press
,
New York
.
11.
Kim
,
J.
, and
Choi
,
H.
,
2009
, “
Large Eddy Simulation of a Circular Jet: Effect of Inflow Conditions on the Near Field
,”
J. Fluid Mech.
,
620
, pp.
383
411
.10.1017/S0022112008004722
12.
Boersma
,
B. J.
,
2005
, “
Large Eddy Simulation of the Sound Field of a Round Turbulent Jet
,”
Theor. Comput. Fluid Dyn.
,
19
, pp.
161
170
.10.1007/s00162-004-0107-7
13.
Bogey
,
C.
, and
Bailly
,
C.
,
2006
, “
Large Eddy Simulations of Round Free Jets Using Explicit Filtering With/Without Dynamic Smagorinsky Model
,”
Int. J Heat Fluid Flow
,
27
, pp.
603
610
.10.1016/j.ijheatfluidflow.2006.02.008
14.
Ranga Dinesh
,
K. K. J.
,
Savill
,
A. M.
,
Jenkins
,
K. W.
, and
Kirkpatrick
,
M. P.
,
2010
, “
LES of Intermittency in a Turbulent Round Jet With Different Inlet Conditions
,”
Comput. Fluids
,
39
, pp.
1685
1695
.10.1016/j.compfluid.2010.06.004
15.
Gohil
,
T. B.
,
Saha
,
A. K.
, and
Muralidhar
,
K.
,
2012
, “
Numerical Study of Instability Mechanisms in a Circular Jet at Low Reynolds Numbers
,”
Comput. Fluids
,
64
, pp.
1
18
.10.1016/j.compfluid.2012.04.016
16.
Lesieur
,
M.
,
Metais
,
O.
, and
Comte
,
P.
,
2005
,
Large Eddy Simulations of Turbulence
,
Cambridge University Press
,
Cambridge, UK
.
17.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1966
, “
Numerical Study of Large-Amplitude Free-Surface Motions
,”
Phys. Fluids
,
9
, pp.
842
851
.10.1063/1.1761784
18.
Gohil
,
T. B.
,
Saha
,
A. K.
, and
Muralidhar
,
K.
,
2011
, “
Direct Numerical Simulation of Naturally Evolving Free Circular Jet
,”
ASME J. Fluids Eng.
,
133
, p. 111203.10.1115/1.4005199
19.
Michalke
,
A.
, and
Hermann
,
G.
,
1982
, “
On the Inviscid Instability of a Circular Jets With External Flow
,”
J. Fluid Mech.
,
114
, pp.
343
359
.10.1017/S0022112082000196
20.
Orlanski
,
I.
,
1976
, “
A Simple Boundary Condition for Unbounded Flows
,”
J. Comput. Phys.
,
21
, pp.
251
269
.10.1016/0021-9991(76)90023-1
21.
Rogallo
,
R. S.
, and
Moin
,
P.
,
1984
, “
Numerical Simulation of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
16
, pp.
99
137
.10.1146/annurev.fl.16.010184.000531
22.
Lilly
,
D. K.
,
1967
, “
The Representation of Small Scale Turbulence in Numerical Simulation Experiments
,”
IBM Scientific Computing Symposium on Environmental Sciences
,
White Plains
,
New York
, pp.
195
209
.
23.
Moin
,
P.
, and
Kim
,
J.
,
1982
, “
Numerical Investigation of Turbulent Channel Flow
,”
J. Fluid Mech.
,
118
, pp.
341
377
.10.1017/S0022112082001116
24.
Piomelli
,
U.
, and
Zang
,
T. A.
,
1991
, “
Large-Eddy Simulation of Transitional Channel Flow
,”
Comput. Phys. Commun.
,
65
, pp.
224
230
.10.1016/0010-4655(91)90175-K
25.
Lévêque
,
E.
,
Toschi
,
F.
,
Shao
,
L.
, and
Bertoglio
,
J. P.
,
2007
, “
A Shear-Improved Smagorinsky Model for the Large-Eddy Simulation of Wall-Bounded Turbulent Flows
,”
J. Fluid Mech.
,
570
, pp.
491
502
.10.1017/S0022112006003429
26.
Toschi
,
F.
,
Lévêque
,
E.
, and
Ruiz-Chavarria
,
G.
,
2000
, “
Shear Effects in Non Homogeneous Turbulence
,”
Phys. Rev. Lett.
,
85
, pp.
1436
1439
.10.1103/PhysRevLett.85.1436
27.
Cahuzac
,
A.
,
Boudet
,
J.
,
Borgnat
,
P.
, and
Lévêque
,
E.
,
2010
, “
Smoothing Algorithms for Mean-Flow Extraction in Large-Eddy Simulation of Complex Flows
,”
Phys. Fluids
,
22
, p.125104.10.1063/1.3490063
28.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Stream, and Convergence Zones in Turbulent Flows
,” Center For Turbulence Research, Report No. CTR-S88.
29.
Gutmark
,
E.
, and
Ho
,
C. M.
,
1983
, “
Preferred Modes and the Spreading Rates of Jets
,”
Phys. Fluids
,
26
, pp.
2932
2938
.10.1063/1.864058
30.
Hussain
,
A. K. M. F.
,
1986
, “
Coherent Structures and Turbulence
,”
J. Fluid Mech.
,
173
, pp.
303
356
.10.1017/S0022112086001192
31.
Hernan
,
M. A.
, and
Jimenez
,
J.
,
1982
, “
Computer Analysis of a High-Speed Film of the Plane Turbulent Mixing Layer
,”
J. Fluid Mech.
,
119
, pp.
323
345
.10.1017/S0022112082001372
32.
Hussain
,
A. K. M. F.
, and
Clark
,
A. R.
,
1981
, “
On the Coherent Structure of the Axisymmetric Mixing Layer: A Flow-Visualization Study
,”
J. Fluid Mech.
,
104
, pp.
263
294
.10.1017/S0022112081002917
33.
Zaman
,
K. B. M. Q.
, and
Hussain
,
A. K. M. F.
,
1980
, “
Vortex Pairing in a Circular Jet Under Controlled Excitation. Part 1. General Jet Response
,”
J. Fluid Mech.
,
101
, pp.
449
544
.10.1017/S0022112080001760
34.
Cohen
,
J.
, and
Wygnanski
,
I.
,
1987
, “
The Evolution of Instabilities in the Axisymmetric Jet. Part 1.The Linear Growth of Disturbances Near the Nozzle
,”
J. Fluid Mech.
,
176
, pp.
191
219
.10.1017/S0022112087000624
35.
Panchapakesan
,
N. R.
, and
Lumley
,
J. L.
,
1993
, “
Turbulence Measurements in Axisymmetric Jets of Air and Helium. 1. Air Jet
,”
J. Fluid Mech.
,
246
, pp.
197
223
.10.1017/S0022112093000096
You do not currently have access to this content.