Fully developed turbulent flow of water through a horizontal flow loop with concentric annular geometry was investigated using high resolution particle image velocimetry (PIV). Reynolds number range varied from 17,700 to 66,900. Axial mean velocity profile was found to be following the universal wall law (u+= y+) in the viscous sublayer (y+ < 10) and log law away from the wall (y+> 30). Radial position of zero shear stress and maximum velocity were found to be slightly different (2%). Root mean square values of velocity fluctuations velocity, Reynolds stresses, vorticity, and turbulent kinetic energy budget were also analyzed.

References

References
1.
Gratao
,
A. C. A.
,
Silveira
, Jr.,
V.
, and
Telis-Romero
,
J.
,
2007
, “
Laminar Flow of Soursop Juice Through Concentric Annuli: Friction Factors and Rheology
,”
J. Food Eng.
,
78
, pp.
1343
1354
.10.1016/j.jfoodeng.2006.01.006
2.
Knudsen
,
J. G.
, and
Katz
,
D. L.
,
1950
, “
Velocity Profile in Annuli
,”
Proc. Midwest. 1st Conf. Fluid Dynamics
, University of Illinois, Ann Arbor, MI.
3.
Rothfus
,
R. R.
,
Monard
,
C. C.
, and
Senscal
,
K. E.
,
1950
, “
Velocity Distribution and Fluid Friction in Flow Through Annular Sections
,”
Ind. Eng. Chem.
,
42
, pp.
2511
.10.1021/ie50492a033
4.
Leung
,
E. Y.
,
Kays
,
W. M.
, and
Reynolds
,
W. C.
,
1962
, “
Heat Transfer With Turbulent Flow in Concentric and Eccentric Annuli With Constant and Variable Heat Flux
,” Technical Report No. AHT-4, Stanford University, Stanford, CA.
5.
Kays
,
W. M.
, and
Leung
,
E. Y.
,
1963
, “
Heat Transfer in Annular Passages-Hydro Dynamically Developed Turbulent Flow With Arbitrarily Prescribed Heat Flux
,”
Int. J. Heat and Mass Transfer
,
6
, pp.
537
.10.1016/0017-9310(63)90012-7
6.
Brighton
,
J. A.
, and
Jones
,
J. B.
,
1964
, “
Fully Developed Turbulent Flow in Annuli
,”
J. Basic Eng.
,
D86
, pp.
835
.10.1115/1.3655966
7.
Kjellstrom
,
B.
, and
Hedberg
,
S.
,
1966
, “
On Shear Stress Distributions for Flow in Smooth or Partially Rough Annuli
,” Technical Report No. AE-243, Aktiebolaget Atomenergie, Stockholm, Sweden.
8.
Lawn
,
C. J.
, and
Elliott
,
C. J.
,
1972
, “
Fully Developed Turbulent Flow Through Concentric Annuli
,”
J. Mech. Eng. Sci.
,
14
(
3
), pp.
195
204
.10.1243/JMES_JOUR_1972_014_027_02
9.
Rehme
,
K.
1974
, “
Turbulent Flow in Smooth Concentric Annuli With Small Radius Ratios
,”
J. Fluid Mech.
,
64
, pp.
263
287
.10.1017/S0022112074002394
10.
Nouri
,
J. M.
,
Umur
,
H.
, and
Whitelaw
,
J. H.
,
1993
, “
Flow of Newtonian and non-Newtonian Fluids in Concentric and Eccentric Annuli
,”
J. Fluid Mech.
,
253
, pp.
617
641
.10.1017/S0022112093001922
11.
Nouri
,
J. M.
, and
Whitelaw
,
J. H.
,
1994
, “
Flow of Newtonian and non-Newtonian Fluids in Concentric Annulus with Rotation of Inner Cylinder
,”
ASME J. Fluids Eng.
,
116
, pp.
821
827
.10.1115/1.2911856
12.
Churchill
,
S. W.
, and
Chan
,
C.
,
1995
, “
Turbulent Flow in Channels in Terms of Local Turbulent Shear and Normal Stress
,”
AIChE J.
,
41
, pp.
2513
2521
.10.1002/aic.690411202
13.
Chung
,
S. Y.
,
Rhee
,
G. H.
, and
Sung
,
H. J.
,
2002
, “
Direct Numerical Simulation of Turbulent Concentric Annular Pipe Flow Part 1: Flow field
,”
Int. J. Heat Fluid Flow
,
23
, pp.
426
440
.10.1016/S0142-727X(02)00140-6
14.
Kaneda
,
M.
,
Yu
,
B.
,
Ozoe
,
H.
, and
Churchill
,
S. W.
,
2003
, “
The Characteristics of Turbulent Flow and Convection in Concentric Circular Annuli, Part I: Flow
,”
Int. J. Heat Mass Transfer
,
46
, pp.
5045
5057
.10.1016/S0017-9310(03)00365-X
15.
Ould-Rouiss
,
M.
,
Redjem-saad
,
L.
, and
Lauriat
,
G.
,
2009
, “
Direct Numerical Simulation of Turbulent Heat Transfer in Annuli: Effect of Heat Flux Ratio
,”
Int. J. Heat Fluid Flow
,
30
, pp.
579
589
.10.1016/j.ijheatfluidflow.2009.02.018
16.
Boersma
,
B. J.
, and
Breugem
,
W. P.
,
2011
, “
Numerical Simulation of Turbulent Flow in Concentric Annuli
,”
Flow Turbulence Combustion
,
86
, pp.
113
117
.10.1007/s10494-010-9295-y
17.
Poole
,
R. J.
,
2010
, “
Development-Length Requirements for Fully Developed Laminar Flow in Concentric Annuli
,”
ASME J. Fluids Eng.
,
132
, pp.
64501
.10.1115/1.4001694
18.
Japper-Jaafar
,
A.
,
Escudier
,
M. P.
, and
Poole
,
R. J.
,
2010
, “
Laminar, Transitional and Turbulent Annular Flow of Drag-Reducing Polymer Solutions
,”
J. Non-Newtonian Fluid Mech.
,
165
, pp.
1357
1372
.10.1016/j.jnnfm.2010.07.001
19.
LaVision.,
2006
, “
Imager intense
,” Product catalogue.
20.
New Wave Research
.,
2003
, “
Operator's Manual, Solo PIV, Nd:YAG
,” Operator's Manual.
21.
Marchioli
,
C.
,
Armenio
,
C.
,
Salvetti
,
M. V.
, and
Soldati
,
A.
,
2006
, “
Mechanisms for Deposition and Resuspension of Heavy Particles in Turbulent Flow Over Wavy Interfaces
,”
Phys. Fluids
,
18
, p.
025102
.10.1063/1.2166453
22.
LaVision,
2006
, “
Flow Master
,” Product Catalogue.
23.
LaVision,
2006
,”
Flow Master Getting Started
,” Product manual.
24.
Nezu
,
I.
, and
Sanjou
,
M.
,
2011
, “
PIV and PTV Measurements in Hydro-Sciences With Focus on Turbulent Open-Channel Flows
,”
J. Hydro-environment Res.
,
5
, pp.
215
230
.10.1016/j.jher.2011.05.004
25.
Kundu
,
P.
, and
Cohen
,
I.
,
2008
,
Fluid Mechanics
,
4th ed.
,
Elsevier
,
Oxford, UK
, pp.
547
549
.
26.
White
,
F. M.
,
2005
,
Viscous Fluid Flow
,
McGraw-Hill Companies
,
New York
.
27.
Bernard
,
P. S.
, and
Wallace
,
J. M.
,
2002
,
Turbulent Flow, Analysis, Measurement and Prediction
,
John Wiley & Sons
,
Hoboken, NJ
, Chap 4.
28.
LaVision,
2006
, “
DaVis 7.2 Software
,” Product-Manual.
29.
Paschkewitz
,
J. S.
,
Dubief
,
Y.
,
Dimitropoulos
,
C. D.
,
Shaqfeh
,
E. S. G.
, and
Parviz
,
M.
,
2004
, “
Numerical Simulation of Turbulent Drag Reduction Using Rigid Fibres
,”
J. Fluid Mech.
,
518
, pp.
281
317
.10.1017/S0022112004001144
You do not currently have access to this content.