S-shaped blade profiles with double camber find use in fully reversible turbomachines that can extract power from tides. Though noncavitating characteristics of S-blades were determined in the past, yet characterizing cavitating flow was not carried out. This work, which is the first step in this direction, uses a two-pronged approach of experimental and numerical characterization of cavitating flow past these hydrofoils. Experimental results indicate that as the angle of attack increases in either positive or negative directions, cavitation inception number increases. Minimum cavitation effect is observed at 2 deg, which is zero lift angle of attack. For higher angles of attack (±6deg, ±4deg) and moderate or low cavitation number (σ/σi0.3), unsteady cloud cavitation was characterized through visual observation and from pressure fluctuation data. It was observed that for unsteady cavity shedding to take place is the length and thickness of the cavity should be more than 50% and 10% of the chord length, respectively. Predicting flow past this geometry is difficult and the problem may be compounded in many applications because of laminar-to-turbulence transition as well as due to the presence of cavitation. Present simulations indicate that the k-kL-ω transition model may be useful in predicting hydrodynamic performance of this type of geometry and for the range of Reynolds number considered in this paper. Hydrodynamic performance under cavitation indicates that pumping mode is more adversely affected by cavitation and, hence, a fully reversible turbomachine may not perform equally well in turbine and pump modes as expected from noncavitating results.

References

References
1.
Simeons
,
C.
,
1980
,
Hydropower: The Use of Water as an Alternative Source of Energy
,
Pergamon Press
, New York.
2.
Ravindran
,
M.
,
1978
, “
Design and Flow Investigation on a Fully-Reversible Pump-Turbine
,” Ph.D. thesis, IIT Madras, India.
3.
Madhusudan
,
R. S.
,
Aswatha Narayana
,
P. A.
,
Balabaskaran
,
V.
, and
Tulapukara
,
E. G.
,
1994
, “
Boundary Layer Studies Over a S-Blade
,”
Fluid Dyn. Res.
,
14
(
5
), pp.
241
258
.10.1016/0169-5983(94)90034-5
4.
Ramachandran
,
R. M.
,
Radha Krishna
,
H. C.
, and
Aswatha Narayana
,
P.
,
1986
, “
Cascade Experiment Over S-Blade
,”
ASCE J. Energy Eng.
,
112
(
1
), pp.
37
50
.10.1061/(ASCE)0733-9402(1986)112:1(37)
5.
Prem Kumar
,
T. M.
, and
Chatterjee
,
D.
,
2008
, “
Numerical Study of Turbulent Flow Over an S-Shaped Hydrofoil
,”
IMechE J. Mech. Eng. Sci. C
,
222
, pp.
1717
1734
.10.1243/09544062JMES929
6.
Balabaskaran
,
V.
,
Lakshmana Gowda
,
B. H.
, and
Venkatasubramanian
,
N.
,
1998
, “
Flow Visualization Studies Over S-Blade
,”
J. Flow Vis. Image Process.
,
5
, pp.
249
259
.
7.
Walters
,
D. K.
, and
Leylek
,
J.
,
2005
, “
Computational Fluid Dynamics Study of Wake-Induced Transition on a Compressor-Like Flat Plate
,”
ASME J. Turbomach.
,
127
, pp.
52
63
.10.1115/1.1791650
8.
Walters
,
D. K.
, and
Davor
,
C.
,
2008
, “
A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flow
,”
ASME J. Fluids Eng.
,
130
, pp.
1
14
.10.1115/1.2979230
9.
Genc
,
M.
,
2010
, “
Numerical Simulation of Flow Over a Thin Aerofoil at a High Reynolds Number Using a Transition Model
,”
IMechE J. Mech. Eng. Sci. C
,
224
, pp.
2155
2164
.10.1243/09544062JMES2121
10.
Arakeri
,
V. H.
, and
Acosta
,
A. J.
,
1973
, “
Viscous Effect in the Inception of Cavitation on Axisymmetric Bodies
,”
ASME J. Fluids Eng.
,
95
(
4
), pp.
519
527
.10.1115/1.3447065
11.
Franc
,
J.
, and
Michel
,
J.
,
1985
, “
Attached Cavitation and the Boundary Layer: Experimental Investigation and Numerical Treatment
,”
J. Fluid Mech.
,
154
, pp.
63
90
.10.1017/S0022112085001422
12.
Briancon-Marjollet
,
L.
,
Franc
,
J.
, and
Michel
,
J.
,
1990
, “
Transient Bubble Interaction With an Attached Cavity and the Boundary Layer
,”
J. Fluid Mech.
,
218
, pp.
355
376
.10.1017/S0022112090001033
13.
Callenaere
,
M.
,
Franc
,
J. P.
,
Michel
,
J.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.10.1017/S0022112001005420
14.
Kawanami
,
Y.
,
Kato
,
H.
,
Yamaguchi
,
H.
,
Tanimura
,
M.
, and
Tagaya
,
Y.
,
1997
, “
Mechanism and Control of Cloud Cavitation
,”
ASME J. Fluids Eng.
,
119
, pp.
788
794
.10.1115/1.2819499
15.
Leroux
,
J.
,
Astolfi
,
J.
, and
Billard
,
J.
,
2004
, “
An Experimental Study of Unsteady Partial Cavitation
,”
ASME J. Fluids Eng.
,
126
, pp.
94
101
.10.1115/1.1627835
16.
Keil
,
T.
,
Pelz
,
F. P.
,
Cordes
,
U.
, and
Ludwig
,
G.
,
2011
, “
Cloud Cavitation and Cavitation Erosion in Convergent Divergent Nozzle
,”
WIMRC 3rd International Cavitation Forum 2011
, University of Warwick, Coventry, UK.
17.
Amromin
,
E.
,
Kopriva
,
J.
,
Arndt
,
R. E. A.
, and
Wosnik
,
M.
,
2006
, “
Hydrofoil Drag Reduction by Partial Cavitation
,”
ASME J. Fluids Eng.
,
128
, pp.
931
936
.10.1115/1.2234787
18.
Blake
,
K. W.
,
Wolpert
,
M. J.
, and
Geib
,
F. E.
,
1977
, “
Cavitation Noise and Inception as Influenced by Boundary-Layer Development on a Hydrofoil
,”
J. Fluid Mech.
,
80
, pp.
617
640
.10.1017/S0022112077002390
19.
Ceccio
,
S. L.
, and
Brennen
,
C. E.
,
1991
, “
Observations of the Dynamics and Acoustics of Traveling Bubble Cavitation
,”
J. Fluid Mech.
,
233
, pp.
633
660
.10.1017/S0022112091000630
20.
Kjeldsen
,
M.
,
Arndt
,
R. E. A.
, and
Effertz
,
M.
,
2000
, “
Spectral Characteristics of Sheet/Cloud Cavitation
,”
ASME J. Fluids Eng.
,
122
, pp.
481
487
.10.1115/1.1287854
21.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1992
, “
A New Modeling of Cavitating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,”
J. Fluid Mech
,
240
, pp.
59
96
.10.1017/S002211209200003X
22.
Kinnas
,
A.
, and
Neal
,
F. E.
,
1993
, “
A Numerical Nonlinear Analysis of the Flow Around Two- and Three-Dimensional Partially Cavitating Hydrofoils
,”
J. Fluid Mech.
,
254
, pp.
151
181
.10.1017/S0022112093002071
23.
Rusak
,
Z.
,
Morris
,
W. J. I.
, and
Peles
,
Y.
,
2007
, “
Prediction of Leading-Edge Sheet Cavitation Inception on Hydrofoils at Low to Moderate Reynolds Numbers Flows
,”
ASME J. Fluids Eng.
,
129
, pp.
1540
1546
.10.1115/1.2801350
24.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
, pp.
617
623
.10.1115/1.1486223
25.
Sauer
,
J.
, and
Schnerr
,
G. H.
,
2001
, “
Development of a New Cavitation Model Based on Bubble Dynamics
,”
Z. Angew. Math. Mech.
,
81
, pp.
561
562
.10.1002/zamm.20010811559
26.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
, pp.
38
45
.10.1115/1.1524584
27.
Coutier-Delgosha
,
O.
,
Devillers
,
J. F.
, and
Pichon
,
T.
,
2006
, “
Internal Structure and Dynamics of Sheet Cavitation
,”
Phys. Fluids
,
18
, pp.
1
12
.10.1063/1.2149882
28.
Coutier-Delgosha
,
O.
,
Deniset
,
F.
,
Astolfi
,
J.
, and
Leroux
,
J.
,
2007
, “
Numerical Prediction of Cavitating Flow on a Two-Dimensional Symmetrical Hydrofoil and Comparison to Experiment
,”
ASME J. Fluids Eng.
,
129
, pp.
279
292
.10.1115/1.2427079
29.
Dular
,
M.
,
Bachert
,
R.
,
Stoffel
,
D.
, and
Sirok
,
B.
,
2004
, “
Experimental Evaluation of Numerical Simulation of Cavitating Flow Around Hydrofoil
,”
Eur. J. Mech. B Fluids
,
24
, pp.
522
538
.10.1016/j.euromechflu.2004.10.004
30.
Zhou
,
L.
, and
Wang
,
Z.
,
2008
, “
Numerical Simulations of Cavitation Around a Hydrofoil and Evaluation of a RNG k-ε Model
,”
ASME J. Fluids Eng.
,
130
, pp.
1
7
.10.1115/1.2816009
31.
Mehta
,
R. D.
, and
Bradshaw
,
P.
,
1979
, “
Design Rules for Small Low-Speed Wind Tunnels
,”
Aero J. Roy. Aeronaut. Soc.
,
73
, pp.
443
449
.
32.
Govindarajulu
,
D.
,
Arakeri
,
V. H.
,
Soundranayagam
,
S.
,
Rao
,
G. N. V.
, and
Ramaprasad
,
1984
.
Hydrodynamic Design of a High Speed Cavitation Tunnel
,” Tech. rep., NSTL/CSIC/CP 35 TR 84.1 IISc Bangalore, India.
33.
Beaudoin
,
J.
,
Cador
,
O.
,
Aider
,
J.
,
Gosse
,
K.
,
Paranthoen
,
P.
,
Hamelin
,
B.
,
Tissier
,
M.
,
Allano
,
D.
,
Mutabazi
,
I.
,
Gonzales
,
M.
, and
Wesfreid
,
J.
,
2004
, “
Cavitation as a Complementary Tool for Automative Aerodynamics
,”
Experiments Fluids
,
37
, pp.
763
768
.10.1007/s00348-004-0879-y
34.
Reisman
,
G.
,
1997
, “
Dynamic, Acoustics and Control of Cloud Cavitation on Hydrofoil
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
35.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp. 3–8.
36.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Experiment. Therm. Fluid Sci.
, pp.
3
17
.10.1016/0894-1777(88)90043-X
37.
Prem Kumar
,
T. M.
,
2012
, “
Experimental and Numerical Investigation of Non-Cavitating and Cavitating Flows Over S-Shaped Hydrofoil
,” Ph.D. thesis, Indian Institute of Technology, Madras, India.
38.
ANSYS-Fluent
,
2010
,
Reference Manual
,
6.2.16 ed.
Fluent Inc.
,
Lebanon NH
.
39.
Sauer
,
J.
, and
Schnerr
,
G. H.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
.” In Fourth International Conference on Multiphase Flow, New Orleans, LA.
40.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
, New York.
41.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
1995
,
An Introduction to Computational Fluid Dynamics
,
Longman Scientific & Technical
, London.
42.
Blake
,
W.
,
1986
,
Mechanics of Flow-Induced Sound and Vibration
, Vol.
I & II
,
Academic Press Inc
,
London
.
43.
Brennen
,
C.
,
1994
,
Hydrodynamics of Pumps
,
Oxford Science Publication
, Oxford, UK.
44.
Reisman
,
G. E.
,
Wang
,
Y. C.
, and
Brennen
,
C. E.
,
1998
, “
Observations of Shock Waves in Cloud Cavitation
,”
J. Fluid Mech.
,
355
, pp.
255
283
.10.1017/S0022112097007830
45.
Hutton
,
S. P.
,
1986
, “
Studies of Cavitation Erosion and Its Relation to Cavitating Flow Patterns
,”
Proc. Int. Symp. Cavitation, Sendai, Japan
,
1
, pp.
21
29
.
46.
Arakeri
,
V. H.
, and
Shanmuganathan
,
V.
,
1985
, “
On the Evidence for the Effect of Bubble Interference on Cavitation Noise
,”
J. Fluid Mech.
,
159
, pp.
131
150
.10.1017/S0022112085003135
You do not currently have access to this content.