Understanding flow through real porous media is of considerable importance given their significance in a wide range of applications. Direct numerical simulations of such flows are very useful in their fundamental understanding. Past works have focused mainly on ordered and disordered arrays of regular shaped structures such as cylinders or spheres to emulate porous media. More recently, extension of these studies to more realistic pore spaces are available in the literature highlighting the enormous potential of such studies in helping the fundamental understanding of pore-level flow physics. In an effort to advance the simulation of realistic porous media flows further, an immersed boundary method (IBM) framework capable of simulating flows through arbitrary surface contours is used in conjunction with a stochastic reconstruction procedure based on simulated annealing. The developed framework is tested in a two-dimensional channel with two types of porous sections—one created using a random assembly of square blocks and another using the stochastic reconstruction procedure. Numerous simulations are performed to demonstrate the capability of the developed framework. The computed pressure drops across the porous section are compared with predictions from the Darcy–Forchheimer equation for media composed of different structure sizes. Finally, the developed methodology is applied to study CO2 diffusion in porous spherical particles of varying porosities.

References

References
1.
Philip
,
J. R.
,
1970
, “
Flow in Porous Media
,”
Annu. Rev. Fluid Mech.
,
2
(
1
), pp.
177
204
.10.1146/annurev.fl.02.010170.001141
2.
Zick
,
A. A.
, and
Homsy
,
G. M.
,
1982
, “
Stokes Flow Through Periodic Arrays of Spheres
,”
J. Fluid Mech.
,
115
, pp.
13
26
.10.1017/S0022112082000627
3.
Rahimian
,
M. H.
, and
Pourshaghaghy
,
A.
,
2002
, “
Direct Simulation of Forced Convection Flow in a Parallel Plate Channel Filled With Porous Media
,”
Int. Commun. Heat Mass Transfer
,
29
(
6
), pp.
867
878
.10.1016/S0735-1933(02)00376-7
4.
Morais
,
A. F.
,
Seybold
,
H.
,
Herrmann
,
H. J.
, and
Andrade
,
J. S.
, Jr.
,
2009
, “
Non-Newtonian Fluid Flow Through Three-Dimensional Disordered Porous Media
,”
Phys. Rev. Lett.
,
103
(
19
), p.
194502
.10.1103/PhysRevLett.103.194502
5.
Hill
,
R. J.
,
Koch
,
D. L.
, and
Ladd
,
A. J. C.
,
2001
, “
The First Effects of Fluid Inertia on Flows in Ordered and Random Arrays of Spheres
,”
J. Fluid Mech.
,
448
(
2
), pp.
213
241
.
6.
Smolarkiewicz
,
P. K.
, and
Winter
,
C. L.
,
2010
, “
Pores Resolving Simulation of Darcy Flows
,”
J. Comput. Phys.
,
229
(
9
), pp.
3121
3133
.10.1016/j.jcp.2009.12.031
7.
Ovaysi
,
S.
, and
Piri
,
M.
,
2010
, “
Direct Pore-Level Modeling of Incompressible Fluid Flow in Porous Media
,”
J. Comput. Physics
,
229
(
19
), pp.
7456
7476
.10.1016/j.jcp.2010.06.028
8.
Andrade
,
J. S.
, Jr.
,
Costa
,
U. M. S.
,
Almeida
,
M. P.
,
Makse
,
H. A.
, and
Stanley
,
H. E.
,
1999
, “
Inertial Effects on Fluid Flow Through Disordered Porous Media
,”
Phys. Rev. Lett.
,
82
(
26
), pp.
5249
5252
.10.1103/PhysRevLett.82.5249
9.
Jaganathan
,
S.
,
Vahedi Tafreshi
,
H.
, and
Pourdeyhimi
,
B.
,
2008
, “
A Realistic Approach for Modeling Permeability of Fibrous Media: 3-D Imaging Coupled With CFD Simulation
,”
Chem. Eng. Sci.
,
63
(
1
), pp.
244
252
.10.1016/j.ces.2007.09.020
10.
Li
,
H.
,
Pan
,
C.
, and
Miller
,
C. T.
,
2005
, “
Pore-Scale Investigation of Viscous Coupling Effects for Two-Phase Flow in Porous Media
,”
Phys. Rev. E
,
72
(
2
), p.
026705
.10.1103/PhysRevE.72.026705
11.
Zhao
,
C.-Y.
,
Dai
,
L.
,
Tang
,
G.
,
Qu
,
Z.
, and
Li
,
Z.
,
2010
, “
Numerical Study of Natural Convection in Porous Media (Metals) Using Lattice Boltzmann Method (LBM)
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
925
934
.10.1016/j.ijheatfluidflow.2010.06.001
12.
Ovaysi
,
S.
, and
Piri
,
M.
,
2011
, “
Pore-Scale Modeling of Dispersion in Disordered Porous Media
,”
J. Contam. Hydrol.
,
124
(
1
), pp.
68
81
.10.1016/j.jconhyd.2011.02.004
13.
Malico
,
I.
, and
de Sousa
,
P. J. F.
,
2012
, “
Modeling the Pore Level Fluid Flow in Porous Media Using the Immersed Boundary Method
,”
Numerical Analysis of Heat and Mass Transfer in Porous Media
,
J. M. P. Q.
Delgado
,
A. G.
Barbosa de Lima
, and
M.
Vázquez da Silva
, eds.,
Springer
,
New York
, pp.
229
251
.
14.
Zaretskiy
,
Y.
,
Geiger
,
S.
,
Sorbie
,
K.
, and
Förster
,
M.
,
2010
, “
Efficient Flow and Transport Simulations in Reconstructed 3D Pore Geometries
,”
Adv. Water Resour.
,
33
(
12
), pp.
1508
1516
.10.1016/j.advwatres.2010.08.008
15.
Adler
,
P. M.
,
Jacquin
,
C. G.
, and
Quiblier
,
J. A.
,
1990
, “
Flow in Simulated Porous Media
,”
Int. J. Multiphase Flow
,
16
(
4
), pp.
691
712
.10.1016/0301-9322(90)90025-E
16.
Yeong
,
C. L. Y.
, and
Torquato
,
S.
,
1998
, “
Reconstructing Random Media
,”
Phys. Rev. E
,
57
(
1
), pp.
495
506
.10.1103/PhysRevE.57.495
17.
Yeong
,
C. L. Y.
, and
Torquato
,
S.
,
1998
, “
Reconstructing Random Media. II. Three-Dimensional Media From Two-Dimensional Cuts
,”
Phys. Rev. E
,
58
(
1
), pp.
224
233
.10.1103/PhysRevE.58.224
18.
Politis
,
M. G.
,
Kikkinides
,
E. S.
,
Kainourgiakis
,
M. E.
, and
Stubos
,
A. K.
,
2008
, “
A Hybrid Process-Based and Stochastic Reconstruction Method of Porous Media
,”
Microporous Mesoporous Mater.
,
110
(
1
), pp.
92
99
.10.1016/j.micromeso.2007.09.024
19.
Peskin
,
C. S.
,
1972
, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
(
2
), pp.
252
271
.10.1016/0021-9991(72)90065-4
20.
Peskin
,
C. S.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
,
25
(
3
), pp.
220
252
.10.1016/0021-9991(77)90100-0
21.
Mittal
,
R.
, and
Iaccarino
,
G.
,
2005
, “
Immersed Boundary Methods
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
239
261
.10.1146/annurev.fluid.37.061903.175743
22.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
,
2000
, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
(
1
), pp.
35
60
.10.1006/jcph.2000.6484
23.
Mohd-Yusof
,
J.
,
1998
, “
Development of Immersed Boundary Methods for Complex Geometries
,”
Center for Turbulence Research
,
Annual Research Briefs
.
24.
Gilmanov
,
A.
, and
Sotiropoulos
,
F.
,
2005
, “
A Hybrid Cartesian/Immersed Boundary Method for Simulating Flows With 3D, Geometrically Complex, Moving Bodies
,”
J. Comput. Phys.
,
207
(
2
), pp.
457
492
.10.1016/j.jcp.2005.01.020
25.
Tafti
,
D. K.
,
2001
, “
GenIDLEST—A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows
,”
Proceedings of the ASME Fluids Engineering Division
,
ASME-FED
,
New York
, pp.
347
356
.
26.
Tafti
,
D. K.
,
2009
, “
Time-Accurate Techniques for Turbulent Heat Transfer Analysis in Complex Geometries
,”
Computational Fluid Dynamics and Heat Transfer: Emerging topics
,
R. S.
Amano
, and
B.
Sunden
, eds.,
WIT
,
Southampton, UK
.
27.
Kang
,
S.
,
Iaccarino
,
G.
,
Ham
,
F.
, and
Moin
,
P.
,
2009
, “
Prediction of Wall-Pressure Fluctuation in Turbulent Flows With an Immersed Boundary Method
,”
J. Comput. Phys.
,
228
(
18
), pp.
6753
6772
.10.1016/j.jcp.2009.05.036
28.
Torquato
,
S.
,
2002
, “
Statistical Description of Microstructures
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp.
77
111
.10.1146/annurev.matsci.32.110101.155324
29.
Čapek
,
P.
,
Hejtmánek
,
V.
,
Brabec
,
L.
,
Zikánová
,
A.
, and
Kočiřík
,
M.
,
2009
, “
Stochastic Reconstruction of Particulate Media Using Simulated Annealing: Improving Pore Connectivity
,”
Transp. Porous Media
,
76
(
2
), pp.
179
198
.10.1007/s11242-008-9242-8
30.
Park
,
J.
,
Kwon
,
K.
, and
Choi
,
H.
,
1998
, “
Numerical Solutions of Flow Past a Circular Cylinder at Reynolds Numbers up to 160
,”
J. Mech. Sci. Technol.
,
12
(
6
), pp.
1200
1205
.
31.
Norberg
,
C.
,
1994
, “
An Experimental Investigation of the Flow Around a Circular Cylinder: Influence of Aspect Ratio
,”
J. Fluid Mech.
,
258
, pp.
287
316
.10.1017/S0022112094003332
32.
Zhang
,
H.-Q.
,
Fey
,
U.
,
Noack
,
B. R.
,
Konig
,
M.
, and
Eckelmann
,
H.
,
1995
, “
On the Transition of the Cylinder Wake
,”
Phys. Fluids
,
7
(
4
), pp.
779
794
.10.1063/1.868601
33.
Barkley
,
D.
, and
Henderson
,
R. D.
,
1996
, “
Three-Dimensional Floquet Stability Analysis of the Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
322
, pp.
215
241
.10.1017/S0022112096002777
34.
Poulikakos
,
D.
, and
Renken
,
K.
,
1987
, “
Forced Convection in a Channel Filled With Porous Medium, Including the Effects of Flow Inertia, Variable Porosity, and Brinkman Friction
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
880
888
.10.1115/1.3248198
35.
Thies-Weesie
,
D. M. E.
, and
Philipse
,
A. P.
,
1994
, “
Liquid Permeation of Bidisperse Colloidal Hard-Sphere Packings and the Kozeny-Carman Scaling Relation
,”
J. Colloid Interface Sci.
,
162
(
2
), pp.
470
480
.10.1006/jcis.1994.1062
36.
Adler
,
P. M.
,
1988
, “
Fractal Porous Media III: Transversal Stokes Flow Through Random and Sierpinski Carpets
,”
Transp. Porous Media
,
3
(
2
), pp.
185
198
.10.1007/BF00820345
37.
Zeng
,
Z.
, and
Grigg
,
R.
,
2006
, “
A Criterion for Non-Darcy Flow in Porous Media
,”
Transp. Porous Media
,
63
(
1
), pp.
57
69
.10.1007/s11242-005-2720-3
38.
Larson
,
R.
, and
Higdon
,
J.
,
1987
, “
Microscopic Flow Near the Surface of Two-Dimensional Porous Media. Part 2. Transverse Flow
,”
J. Fluid Mech.
,
178
(
1
), pp.
119
136
.10.1017/S0022112087001149
39.
Koch
,
D. L.
, and
Ladd
,
A. J. C.
,
1997
, “
Moderate Reynolds Number Flows Through Periodic and Random Arrays of Aligned Cylinders
,”
J. Fluid Mech.
,
349
, pp.
31
66
.10.1017/S002211209700671X
You do not currently have access to this content.