A parallel implementation of an immersed-boundary (IB) method is presented for low Reynolds number flow simulations in a representative elementary volume (REV) of porous media that are composed of a periodic array of regularly arranged structures. The material of the structure in the REV can be solid (impermeable) or microporous (permeable). Flows both outside and inside the microporous media are computed simultaneously by using an IB method to solve a combination of the Navier–Stokes equation (outside the microporous medium) and the Zwikker–Kosten equation (inside the microporous medium). The numerical simulation is firstly validated using flow through the REVs of impermeable structures, including square rods, circular rods, cubes, and spheres. The resultant pressure gradient over the REVs is compared with analytical solutions of the Ergun equation or Darcy–Forchheimer law. The good agreements demonstrate the validity of the numerical method to simulate the macroscopic flow behavior in porous media. In addition, with the assistance of a scientific parallel computational library, PETSc, good parallel performances are achieved. Finally, the IB method is extended to simulate species transport by coupling with the REV flow simulation. The species sorption behaviors in an REV with impermeable/solid and permeable/microporous materials are then studied.

References

References
1.
McCoy
,
B. J.
, and
Rolston
,
D. E.
,
1992
, “
Convective-Transport of Gases in Moist Porous-Media—Effect of Absorption, Adsorption, and Diffusion in Soil Aggregates
,”
Environ. Sci. Technol.
,
26
(
12
), pp.
2468
2476
.10.1021/es00036a020
2.
Xu
,
Y.
,
Zheng
,
Z. C.
, and
Wilson
,
D. K.
,
2011
, “
A Computational Study of the Effect of Windscreen Shape and Flow Resistivity on Turbulent Wind Noise Reduction
,”
J. Acoust. Soc. Am.
,
129
(
4
), pp.
1740
1747
.10.1121/1.3552886
3.
Xu
,
Y.
,
Zheng
,
Z. C.
, and
Wilson
,
D. K.
,
2010
, “
Simulation of Turbulent Wind Noise Reduction by Porous Windscreens Using High-Order Schemes
,”
J. Comput. Acoust.
,
18
(
4
), pp.
321
334
.10.1142/S0218396X10004231
4.
Singh
,
P. P.
,
Cushman
,
J. H.
, and
Maier
,
D. E.
,
2003
, “
Multiscale Fluid Transport Theory for Swelling Biopolymers
,”
Chem. Eng. Sci.
,
58
(
11
), pp.
2409
2419
.10.1016/S0009-2509(03)00084-8
5.
Montillet
,
A.
,
2004
, “
Flow Through a Finite Packed Bed of Spheres: A Note on the Limit of Applicability of the Forchheimer-Type Equation
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
139
143
.10.1115/1.1637928
6.
Vafai
,
K.
, and
Hadim
,
H. A.
,
2000
,
Handbook of Porous Media
,
Marcel Dekker
,
New York.
7.
Nakayama
,
A.
,
1995
,
PC-Aided Numerical Heat Transfer and Convective Flow
,
CRC Press
,
Boca Raton, FL
.
8.
Kuwahara
,
F.
,
Kameyama
,
Y.
,
Yamashita
,
S.
, and
Nakayama
,
A.
,
1998
, “
Numerical Modeling of Turbulent Flow in Porous Media Using a Spatially Periodic Array
,”
J. Porous Media
,
1
(
1
), pp.
47
55
.
9.
Kuwahara
,
F.
,
Nakayama
,
A.
, and
Koyama
,
H.
,
1994
, “
Numerical Modeling of Heat and Fluid Flow in a Porous Medium
,” Proceedings of the 10th International Heat Transfer Conference, Brighton, Vol. 5, pp.
309
314
.
10.
Nakayama
,
A.
,
Kuwahara
,
F.
,
Umemoto
,
T.
, and
Hayashi
,
T.
,
2002
, “
Heat and Fluid Flow Within an Anisotropic Porous Medium
,”
ASME J. Heat Transfer
,
124
(
4
), pp.
746
753
.10.1115/1.1481355
11.
Teruel
,
F. E.
, and
Rizwan-Uddin
,
2009
, “
Characterization of a Porous Medium Employing Numerical Tools: Permeability and Pressure-Drop from Darcy to Turbulence
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5878
5888
.10.1016/j.ijheatmasstransfer.2009.07.017
12.
Kuwahara
,
F.
,
Yamane
,
I.
, and
Nakayama
,
A.
,
2006
, “
Large Eddy Simulation of Turbulent Flow in Porous Media
,”
Int. Commun. Heat Mass. Transfer
,
33
(
4
), pp.
411
418
.10.1016/j.icheatmasstransfer.2005.12.011
13.
Pedras
,
M. H. J.
, and
De Lemos
,
M. J. S.
,
2001
, “
Simulation of Turbulent Flow in Porous Media Using a Spatially Periodic Array and a Low Re Two-Equation Closure
,”
Numer. Heat Transfer, Part A
,
39
(
1
), pp.
35
59
.10.1080/104077801458456
14.
Kuwahara
,
F.
,
Yang
,
C.
,
Ando
,
K.
, and
Nakayama
,
A.
,
2011
, “
Exact Solutions for a Thermal Nonequilibrium Model of Fluid Saturated Porous Media Based on an Effective Porosity
,”
ASME J. Heat Transfer
,
133
(
11
), p.
112602
.10.1115/1.4004354
15.
Nakayama
,
A.
,
Kuwahara
,
F.
, and
Sano
,
Y.
,
2007
, “
Concept of Equivalent Diameter for Heat and Fluid Flow in Porous Media
,”
AIChE J.
,
53
(
3
), pp.
732
736
.10.1002/aic.11092
16.
Nakayama
,
A.
,
Kuwahara
,
F.
, and
Hayashi
,
T.
,
2004
, “
Numerical Modelling for Three-Dimensional Heat and Fluid Flow Through a Bank of Cylinders in Yaw
,”
J. Fluid Mech.
,
498
, pp.
139
159
.10.1017/S0022112003006712
17.
Nakayama
,
A.
,
Kuwahara
,
F.
, and
Kodama
,
Y.
,
2006
, “
An Equation for Thermal Dispersion Flux Transport and Its Mathematical Modelling for Heat and Fluid Flow in a Porous Medium
,”
J. Fluid Mech.
,
563
, pp.
81
96
.10.1017/S0022112006001078
18.
Teruel
,
F. E.
, and
Rizwan-Uddin
,
2009
, “
A New Turbulence Model for Porous Media Flows. Part II: Analysis and Validation Using Microscopic Simulations
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5193
5203
.10.1016/j.ijheatmasstransfer.2009.04.023
19.
Teruel
,
F. E.
, and
Rizwan-Uddin
,
2010
, “
Numerical Computation of Macroscopic Turbulence Quantities in Representative Elementary Volumes of the Porous Medium
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5190
5198
.10.1016/j.ijheatmasstransfer.2010.07.041
20.
Kazerooni
,
R. B.
, and
Hannani
,
S. K.
,
2009
, “
Simulation of Turbulent Flow Through Porous Media Employing a v2f Model
,”
Sci. Iran., Trans. B
,
16
(
2
), pp.
159
167
.
21.
Yang
,
X.
,
Zheng
,
Z. C.
,
Winecki
,
S.
, and
Eckels
,
S.
,
2013
, “
Model Simulation and Experiments of Flow and Mass Transport through a Nano-Material Gas Filter
,”
Appl. Math. Modell.
,
37
(
20–21
), pp.
9052
9062
.10.1016/j.apm.2013.04.021
22.
Bhattacharyya
,
S.
,
Dhinakaran
,
S.
, and
Khalili
,
A.
,
2006
, “
Fluid Motion Around and Through a Porous Cylinder
,”
Chem. Eng. Sci.
,
61
(
13
), pp.
4451
4461
.10.1016/j.ces.2006.02.012
23.
Chen
,
X. B.
,
Yu
,
P.
,
Winoto
,
S. H.
, and
Low
,
H. T.
,
2008
, “
Numerical Analysis for the Flow Past a Porous Square Cylinder Based on the Stress-Jump Interfacial-Conditions
,”
Int. J. Numer. Methods Heat Fluid Flow
,
18
(
5–6
), pp.
635
655
.10.1108/09615530810879756
24.
Angot
,
P.
,
Bruneau
,
C. H.
, and
Fabrie
,
P.
,
1999
, “
A Penalization Method to Take Into Account Obstacles in Incompressible Viscous Flows
,”
Numer. Math.
,
81
(
4
), pp.
497
520
.10.1007/s002110050401
25.
Yu
,
P.
,
Zeng
,
Y.
,
Lee
,
T. S.
,
Chen
,
X. B.
, and
Low
,
H. T.
,
2012
, “
Numerical Simulation on Steady Flow Around and Through a Porous Sphere
,”
Int. J. Heat Fluid Flow
,
36
, pp.
142
152
.10.1016/j.ijheatfluidflow.2012.03.002
26.
Wilson
,
D. K.
,
Collier
,
S. L.
,
Ostashev
, V
. E.
,
Aldridge
,
D. F.
,
Symon
,
N. P.
, and
Marlin
,
D. H.
,
2006
, “
Time-Domain Modeling of the Acoustic Impedance of Porous Surfaces
,”
Acta Acust.
,
92
(
6
), pp.
965
975
.
27.
Wilson
,
D. K.
,
Ostashev
, V
. E.
,
Collier
,
S. L.
,
Symons
,
N. P.
,
Aldridge
,
D. F.
, and
Marlin
,
D. H.
,
2007
, “
Time-Domain Calculations of Sound Interactions With Outdoor Ground Surfaces
,”
Appl. Acoust.
,
68
(
2
), pp.
173
200
.10.1016/j.apacoust.2005.10.004
28.
Corapcioglu
,
M. Y.
,
1991
,
Advances in Porous Media
,
1st ed., Elsevier Science
,
New York
.
29.
Peskin
,
C. S.
,
1972
, “
Flow Patterns Around Heat Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
, pp.
252
271
.10.1016/0021-9991(72)90065-4
30.
Luo
,
H. X.
,
Mittal
,
R.
,
Zheng
,
X. D.
,
Bielamowicz
,
S. A.
,
Walsh
,
R. J.
, and
Hahn
,
J. K.
,
2008
, “
An Immersed-Boundary Method for Flow-Structure Interaction in Biological Systems With Application to Phonation
,”
J. Comput. Phys.
,
227
(
22
), pp.
9303
9332
.10.1016/j.jcp.2008.05.001
31.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M.
,
Vargas
,
A.
, and
Von Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.10.1016/j.jcp.2008.01.028
32.
Vanella
,
M.
,
Rabenold
,
P.
, and
Balaras
,
E.
,
2010
, “
A Direct-Forcing Embedded-Boundary Method With Adaptive Mesh Refinement for Fluid-Structure Interaction Problems
,”
J. Comput. Phys.
,
229
(
18
), pp.
6427
6449
.10.1016/j.jcp.2010.05.003
33.
Yang
,
J. M.
, and
Balaras
,
E.
,
2006
, “
An Embedded-Boundary Formulation for Large-Eddy Simulation of Turbulent Flows Interacting With Moving Boundaries
,”
J. Comput. Phys.
,
215
(
1
), pp.
12
40
.10.1016/j.jcp.2005.10.035
34.
Mittal
,
R.
, and
Iaccarino
,
G.
,
2005
, “
Immersed Boundary Methods
,”
Ann. Rev. Fluid Mech.
,
37
, pp.
239
261
.10.1146/annurev.fluid.37.061903.175743
35.
Malico
,
I.
, and
Ferreira De Sousa
,
P. J. S.
,
2012
, “
Modeling the Pore Level Fluid Flow in Porous Media Using the Immersed Boundary Method
,”
Numerical Analysis of Heat and Mass Transfer in Porous Media
, Vol. 27,
J. M. P. Q.
Delgado
,
A. G.
Barbosa de Lima
, and
M.
Vázquez da Silva
, eds.,
Springer
,
New York
, pp.
229
251
.
36.
Zhang
,
N.
, and
Zheng
,
Z. C.
,
2007
, “
An Improved Direct-Forcing Immersed-Boundary Method for Finite Difference Applications
,”
J. Comput. Phys.
,
221
(
1
), pp.
250
268
.10.1016/j.jcp.2006.06.012
37.
Yang
,
X. F.
, and
Zheng
,
Z. C.
,
2010
, “
Nonlinear Spacing and Frequency Effects of an Oscillating Cylinder in the Wake of a Stationary Cylinder
,”
Phys. Fluids
,
22(4)
, p.
043601
.10.1063/1.3372169
38.
Zhang
,
N.
, and
Zheng
,
Z. C.
,
2009
, “
Flow/Pressure Characteristics for Flow Over Two Tandem Swimming Fish
,”
Comput. Fluids
,
38
(
5
), pp.
1059
1064
.10.1016/j.compfluid.2008.01.016
39.
Zhang
,
N.
,
Zheng
,
Z. C.
, and
Eckels
,
S.
,
2008
, “
Study of Heat-Transfer on the Surface of a Circular Cylinder in Flow Using an Immersed-Boundary Method
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1558
1566
.10.1016/j.ijheatfluidflow.2008.08.009
40.
Zheng
,
Z. C.
, and
Wei
,
Z.
,
2012
, “
Study of Mechanisms and Factors That Influence the Formation of Vortical Wake of a Heaving Airfoil
,”
Phys. Fluids
,
24
(
10
), p.
103601
.10.1063/1.4760258
41.
Zheng
,
Z. C.
, and
Zhang
,
N.
,
2008
, “
Frequency Effects on Lift and Drag for Flow Past an Oscillating Cylinder
,”
J. Fluid Struct.
,
24
(
3
), pp.
382
399
.10.1016/j.jfluidstructs.2007.08.010
42.
Ciani
,
A.
,
Goss
,
K. U.
, and
Schwarzenbach
,
R. P.
,
2005
, “
Determination of Molar Absorption Coefficients of Organic Compounds Adsorbed in Porous Media
,”
Chemosphere
,
61
(
10
), pp.
1410
1418
.10.1016/j.chemosphere.2005.04.082
43.
Trojakova
,
E.
, and
Babusikova
,
J.
,
2012
, “
Contaminant Transport in Partially Saturated Porous Media
,”
Numerical Analysis of Heat and Mass Transfer in Porous Media
, Vol. 27,
J. M. P. Q.
Delgado
,
A. G.
Barbosa de Lima
, and
M.
Vázquez da Silva
, eds.,
Springer
,
New York
, pp.
297
316
.
44.
Ansys®, “Fluent, Release 14.0, Help System,” Ansys, Inc., Canonsburg, PA.
45.
Baytas
,
A. C.
,
Erdem
,
D.
,
Acar
,
H.
,
Cetiner
,
O.
, and
Basci
,
H.
,
2012
, “
Analytical Determination of the Permeability for Slow Flow Past Periodic Arrays of Cylinders With Different Cross Sections
,”
J. Porous Media
,
15
(
11
), pp.
1009
1018
.10.1615/JPorMedia.v15.i11.20
46.
Crowe
,
C. T.
,
2012
,
Multiphase Flows With Droplets and Particles
,
CRC Press
,
Boca Raton, FL
.
47.
Bear
,
J.
, and
Cheng
,
A. H. D.
,
2010
,
Modeling Groundwater Flow and Contaminant Transport, Theory and Applications of Transport in Porous Media
,
Springer
,
New York
.
48.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Sciences
,
McGraw-Hill
,
New York
.
49.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
,
1977
, “
Fully Developed Flow and Heat-Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer
,
99
(
2
), pp.
180
186
.10.1115/1.3450666
50.
Wei
,
Z.
, and
Zheng
,
Z. C.
,
2012
, “
Parallel Implementation and Performance of an Immersed Boundary Method
,” ASME Publ. No. FEDSM2012-72318, ASME Fluids Engineering Division Summer Meeting, Puerto Rico, July 8–12.
51.
Smith
,
B. F.
,
Bjørstad
,
P. E.
, and
Gropp
,
W.
,
1996
,
Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations
,
Cambridge University
,
Cambridge, UK
.
52.
McCormick
,
S. F.
,
1987
,
Multigrid Methods, Frontiers in Applied Mathematics
,
SIAM, Philadelphia
,
PA
.
53.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
2
), pp.
89
94
.
54.
Martin
,
A. R.
,
Saltiel
,
C.
, and
Shyy
,
W.
,
1998
, “
Frictional Losses and Convective Heat Transfer in Sparse, Periodic Cylinder Arrays in Cross Flow
,”
Int. J. Heat Mass Transfer
,
41
(
15
), pp.
2383
2397
.10.1016/S0017-9310(97)00300-1
55.
Whitaker
,
S.
,
1996
, “
The Forchheimer Equation: A Theoretical Development
,”
Transp. Porous Media
,
25
(
1
), pp.
27
61
.10.1007/BF00141261
56.
Papathanasiou
,
T. D.
,
Markicevic
,
B.
, and
Dendy
,
E. D.
,
2001
, “
A Computational Evaluation of the Ergun and Forchheimer Equations for Fibrous Porous Media
,”
Phys. Fluids.
,
13
(
10
), pp.
2795
2804
.10.1063/1.1401811
You do not currently have access to this content.