Two different direct-forcing immersed boundary methods (IBMs) were applied for the purpose of simulating slow flow through a real porous medium: the volume penalization IBM and the stress IBM. The porous medium was a random close packing of about 9000 glass beads in a round tube. The packing geometry was determined from an X-ray computed tomography (CT) scan in terms of the distribution of the truncated solid volume fraction (either 0 or 1) on a three-dimensional Cartesian grid. The scan resolution corresponded to 19.3 grid cells over the mean bead diameter. A facility was built to experimentally determine the permeability of the packing. Numerical simulations were performed for the same packing based on the CT scan data. For both IBMs the numerically determined permeability based on the Richardson extrapolation was just 10% lower than the experimentally found value. As expected, at finite grid resolution the stress IBM appeared to be the most accurate IBM.

References

References
1.
Sahraoui
,
M.
and
Kaviany
,
M.
,
1992
, “
Slip and No-Slip Velocity Boundary Conditions at Interface of Porous, Plain Media
,”
Int. J. Heat Mass Transfer
,
35
(
4
), pp.
927
943
.10.1016/0017-9310(92)90258-T
2.
Zick
,
A. A.
and
Homsy
,
G. M.
,
1982
, “
Stokes Flow Through Periodic Arrays of Spheres
,”
J. Fluid Mech.
,
115
, pp.
13
26
.10.1017/S0022112082000627
3.
Breugem
,
W.-P.
, and
Boersma
,
B.
,
2005
, “
Direct Numerical Simulations of Turbulent Flow Over a Permeable Wall Using a Direct and a Continuum Approach
,”
Phys. Fluids
,
17
(
2
), p.
025103
.10.1063/1.1835771
4.
Narsilio
,
G. A.
,
Buzzi
,
O.
,
Fityus
,
S.
,
Yun
,
T. S.
, and
Smith
,
D. W.
,
2009
, “
Upscaling of Navier–Stokes Equations in Porous Media: Theoretical, Numerical and Experimental Approach
,”
Comput. Geotech.
,
36
, pp.
1200
1206
.10.1016/j.compgeo.2009.05.006
5.
Kaczmarczyk
,
J.
,
Dohnalik
,
M.
,
Zalewska
,
J.
, and
Cnudde
,
V.
,
2010
, “
The Interpretation of X-ray Computed Microtomography Images of Rocks as an Application of Volume Image Processing and Analysis
,”
Proceedings of the WSCG 2010—Communication Papers
, pp.
23
30
.
6.
Kaczmarczyk
,
J.
,
Dohnalik
,
M.
, and
Zalewska
,
J.
,
2010
, “
Three-Dimensional Pore Scale Fluid Flow Simulation Based on Computed Microtomography Carbonate Rocks' Images
,”
Fifth European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2010)
.
7.
Zaretskiy
,
Y.
,
Geiger
,
S.
,
Sorbie
,
K.
, and
Förster
,
M.
,
2010
, “
Efficient Flow and Transport Simulations in Reconstructed 3D Pore Geometries
,”
Adv. Water Res.
,
33
, pp.
1508
1516
.10.1016/j.advwatres.2010.08.008
8.
Ovaysi
,
S.
and
Piri
,
M.
,
2010
, “
Direct Pore-Level Modeling of Incompressible Fluid Flow in Porous Media
,”
J. Comput. Phys.
,
229
, pp.
7456
7476
.10.1016/j.jcp.2010.06.028
9.
Gerbaux
,
O.
,
Buyens
,
F.
,
Mourzenko
,
V. V.
,
Memponteil
,
A.
,
Vabre
,
A.
,
Thovert
,
J.-F.
, and
Adler
,
P.
,
2010
, “
Transport Properties of Real Metallic Foams
,”
J. Colloid Interface Sci.
,
342
, pp.
155
165
.10.1016/j.jcis.2009.10.011
10.
Mittal
,
R.
and
Iaccarino
,
G.
,
2005
, “
Immersed Boundary Methods
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
239
261
.10.1146/annurev.fluid.37.061903.175743
11.
Smolarkiewicz
,
P. K.
and
Winter
,
C. L.
,
2010
, “
Pores Resolving Simulation of Darcy Flows
,”
J. Comput. Phys.
,
229
, pp.
3121
3133
.10.1016/j.jcp.2009.12.031
12.
Lopez Penha
,
D. J.
,
Geurts
,
B. J.
,
Stolz
,
S.
, and
Nordlund
,
M.
,
2011
, “
Computing the Apparent Permeability of an Array of Staggered Square Rods Using Volume-Penalization
,”
Comput. Fluids
,
51
, pp.
157
173
.10.1016/j.compfluid.2011.08.011
13.
Kajishima
,
T.
,
Takiguchi
,
S.
,
Hamasaki
,
H.
, and
Miyake
,
Y.
,
2001
, “
Turbulence Structure of Particle-Laden Flow in a Vertical Plane Channel Due to Vortex Shedding
,”
JSME Int. J., Ser. B
,
44
(
4
), pp.
526
535
.10.1299/jsmeb.44.526
14.
Pourquie
,
M.
,
Breugem
,
W.-P.
, and
Boersma
,
B. J.
,
2009
, “
Some Issues Related to the Use of Immersed Boundary Methods to Represent Square Obstacles
,”
Int. J. Multiscale Comp. Eng.
,
7
(
6
), pp.
509
522
.10.1615/IntJMultCompEng.v7.i6.30
15.
Bear
,
J.
,
1988
,
Dynamics of Fluids in Porous Media
,
Dover
,
New York
.
16.
Whitaker
,
S.
,
1999
,
The Method of Volume Averaging
,
Kluwer
,
Dordrecht, The Netherlands
.
17.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
,
John Wiley and Sons
,
New York
.
18.
MacDonald
,
I. F.
,
El-Sayed
,
M. S.
,
Mow
,
K.
, and
Dullien
,
F. A. L.
,
1979
, “
Flow Through Porous Media: The Ergun Equation Revisited
,”
Ind. Eng. Chem. Fundam.
,
18
(
3
), pp.
199
208
.10.1021/i160071a001
19.
Gupte
,
A. R.
,
1970
, “
Experimentelle Untersuchung der Einflüsse von Porosität und Korngrößenverteilung im Widerstandsgesetz der Porenströmung
,” Ph.D. thesis,
Karlsruhe Institute of Technology
,
Karlsruhe, Germany
.
20.
Vafai
,
K.
,
1984
, “
Convective Flow and Heat Transfer in Variable-Porosity Porous Media
,”
J. Fluid Mech.
,
147
, pp.
233
259
.10.1017/S002211208400207X
21.
Song
,
C.
,
Wang
,
P.
, and
Makse
,
H.
,
2008
, “
A Phase Diagram for Jammed Matter
,”
Nature (London)
,
453
, p.
629632
.10.1038/nature06981
22.
Cheng
,
N. S.
,
2008
, “
Formula for the Viscosity of a Glycerol-Water Mixture
,”
Ind. Eng. Chem. Res.
,
47
(
9
), pp.
3285
3288
.10.1021/ie071349z
23.
Harlow
,
F. H.
and
Welch
,
J. E.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
,
8
(
12
), pp.
2182
2189
.10.1063/1.1761178
24.
Wesseling
,
P.
,
2001
,
Principles of Computational Fluid Dynamics (Springer Series in Computational Mathematics)
, Vol.
29
,
Springer-Verlag
,
Berlin
.
25.
Scotti
,
A.
,
2006
, “
Direct Numerical Simulation of Turbulent Channel Flows With Boundary Roughened With Virtual Sandpaper
,”
Phys. Fluids
,
18
, p.
031701
.10.1063/1.2183806
26.
Belliard
,
M.
and
Fournier
,
C.
,
2010
, “
Penalized Direct Forcing and Projection Schemes for Navier–Stokes
,”
C.R. Acad. Sci., Ser. I
,
348
, pp.
1133
1136
.10.1016/j.crma.2010.09.016
27.
Ferziger
,
J. H.
and
Perić
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
,
Springer-Verlag
,
Berlin
.
28.
Mustakis
,
I.
and
Kim
,
S.
,
1998
, “
Microhydrodynamics of Sharp Corners and Edges: Traction Singularities
,”
AIChE J.
,
44
, pp.
1469
1483
.10.1002/aic.690440702
You do not currently have access to this content.