The immersed-boundary method is coupled to an incompressible-flow Reynolds-averaged Navier Stokes solver, based on a two-equation turbulence model, to perform unsteady numerical simulations of airflow past the NACA-0012 airfoil for several angles of attack and Reynolds numbers of 5.0×105 and 1.8×106. A preliminary study is performed to evaluate the sensitivity of the calculations to the computational mesh and to guide the creation of the computational cells for the unsteady calculations. Qualitative characterizations of the flow in the vicinity of the airfoil are obtained to assess the capability of locally refined grids to capture the thin boundary layers close to the airfoil leading edge as well as the wake flow emanating from the trailing edge. Quantitative analysis of aerodynamic force coefficients and wall pressure distributions are also reported and compared to experimental results and those from body-fitted grid simulations using the same solver to assess the accuracy and limitations of this approach. The immersed-boundary simulations compared well to the experimental and body-fitted results up to the occurrence of separation. After that point, neither computational approach provided satisfactory solutions.

References

References
1.
Mittal
,
R.
, and
Iaccarino
,
G.
,
2005
, “
Immersed Boundary Methods
,”
Ann. Rev. Fluid Mech.
,
37
, pp.
239
261
.10.1146/annurev.fluid.37.061903.175743
2.
Peskin
,
C.
,
1972
, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
, pp.
220
252
.10.1016/0021-9991(72)90065-4
3.
McQueen
,
D.
,
Peskin
,
C.
, and
Zhu
,
L.
,
2001
, “
The Immersed Boundary Method for Incompressible Fluid-Structure Interaction
,” Proceedings-First MIT Conference on Computational Fluid and Solid Mechanics, Elsevier, Oxford, UK, Vol.
1
, pp.
26
30
.
4.
Fadlun
,
E.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
,
2000
, “
Combined Immersed-Boundary/Finite Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
, pp.
35
60
.10.1006/jcph.2000.6484
5.
Kim
,
J.
,
Kim
,
D.
, and
Choi
,
H.
,
2001
, “
An Immersed Boundary Finite Volume Method for Simulations of Flow in Complex Geometries
,”
J. Comput. Phys.
,
171
, pp.
132
150
.10.1006/jcph.2001.6778
6.
Kalitzin
,
G.
, and
Iaccarino
,
G.
,
2002
, “
Turbulence Modeling in an Immersed-Boundary RANS Method
,” Annual Research Briefs,
Stanford University Center for Turbulence Research
,
Stanford, CA
, pp.
415
426
.
7.
Tessicini
,
F.
,
Iaccarino
,
G.
,
Fatica
,
M.
,
Wang
,
M.
, and
Verzicco
,
R.
,
2002
, “
Wall Modeling for Large-Eddy Simulation Using an Immersed Boundary Method
,” Annual Research Briefs,
Stanford University Center for Turbulence Research
,
Stanford, CA
, pp.
181
187
.
8.
Jindal
,
S.
,
Khalighi
,
B.
, and
Iaccarino
,
G.
,
2005
, “
Numerical Investigation of Road Vehicle Aerodynamics Using the Immersed Boundary RANS Approach
,” SAE World Congress, Detroit, MI, SAE Paper No. 2005-01-0546.
9.
Gilmanov
,
A.
,
Sotiropoulos
,
F.
, and
Balaras
,
E.
,
2003
, “
A General Reconstruction Algorithm for Simulating Flows With Complex 3D Immersed Boundaries on Cartesian Grids
,”
J. Comput. Phys.
,
191
, pp.
660
669
.10.1016/S0021-9991(03)00321-8
10.
de Tullio
,
M.
,
De Palma
,
P.
,
Iaccarino
,
G.
,
Pascazio
,
G.
, and
Napolitano
,
M.
,
2007
, “
An Immersed Boundary Method for Compressible Flows Using Local Grid Refinement
,”
J. Comput. Phys.
,
225
, pp.
2098
2217
.10.1016/j.jcp.2007.03.008
11.
Choi
,
J.-I.
,
Oberoi
,
R.
,
Edwards
,
J.
, and
Rosati
,
J.
,
2007
, “
An Immersed Boundary Method for Complex Incompressible Flows
,”
J. Comput. Phys.
,
224
, pp.
757
784
.10.1016/j.jcp.2006.10.032
12.
Jindal
,
S.
Khalighi
,
B.
Johnson
,
J.
Chen
,
K.-H.
, and
Iaccarino
,
G.
,
2007
, “
The Immersed Boundary CFD Approach for Complex Aerodynamic Flow Predictions
,” SAE World Congress, Detroit, MI, SAE Paper No. 2007-01-0109.
13.
McBeath
,
S.
,
2006
,
Competition Car Aerodynamics
,
Haynes Publishing
,
Newbury Park, CA
.
14.
FLUENT 6.3 User's Guide,
2006
, ANSYS, Inc., Lebanon, NH.
15.
Abbott
,
I.
, and
von Doenhoff
,
A.
,
1959
,
Theory of Winged Sections, Including a Summary of Airfoil Data
,
Dover
,
New York
.
16.
Critzos
,
C.
,
Heyson
,
H.
, and
Boswinkle
,
R.
, Jr.
,
1955
, “
Aerodynamic Characteristics of NACA 0012 Airfoil Section at Angles of Attack From 0 deg To 180 deg
,” NACA Technical Note 3361.
17.
“Viscous Grid Spacing Calculator,” http://geolab.larc.nasa.gov/APPS/YPlus/
18.
Shih
,
T.-H.
,
Liou
,
W.
,
Shabbir
;
A.
,
Tang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New K-Epsilon Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
19.
Yakhof
,
V.
,
Orszag
,
S.
,
Thangam
,
S.
,
Gaski
,
T.
, and
Speziale
,
C.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
14
(
7
), pp.
1510
1520
.10.1063/1.858424
20.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
,
1928
, “
Uber die Partiellen Differenzengleichungen der Mathematischen Physik
,”
Math. Ann.
,”
100
(
1
), pp.
32
73
.10.1007/BF01448839
21.
Lockard
,
D. P.
,
Luo
,
L.-S.
, and
Singer
,
B. A.
,
2000
, “
Evaluation of the Lattice-Boltzmann Equation Solver PowerFLOW for Aerodynamic Applications
,” NASA/CR-2000-210550, ICASE REPORT No. 2000-40.
You do not currently have access to this content.