A properly dispersed population of small bubbles can mitigate cavitation damage to a spallation neutron source target. In order to measure such a bubble population, an acoustic device was developed and implemented in a mercury loop at ORNL. The instrument generated pulses of various frequencies and measured their acoustic propagation in the bubbly medium. It then deduced sound speed and attenuation at the various frequencies and used an inverse problem solver to provide near real-time measurements of bubble size distribution and void fraction. The measurements were then favorably compared with an optical method.

References

References
1.
Oakridge National Laboratory
,
2013
, “
Spallation Neutron Source
,” http://neutrons.ornl.gov/facilities/SNS/
2.
Wendel
,
M.
,
Abdou
,
A.
,
Paquit
,
V.
,
Felde
,
D.
, and
Riemer
,
B.
,
2010
, “
Creating Small Gas Bubbles in Flowing Mercury Using Turbulence at an Orifice
,”
Proceedings of the FEDSM2010, ASME Fluids Engineering Division Summer Meeting
, Montreal, Canada.
3.
Chitnis
,
P.
,
Manzi
,
N.
,
Cleveland
,
R.
,
Roy
,
R.
, and
Holt
,
R.
,
2010
, “
Mitigation of Damage to Solid Surfaces From the Collapse of Cavitation Bubble Clouds
,”
ASME J. Fluids Eng.
,
132
, p.
051303
.10.1115/1.4001552
4.
Li
,
Y.
,
Chen
,
H.
,
Wang
,
J.
, and
Chen
,
D.
,
2010
, “
Effect of Grooves on Cavitation Around the Body of Revolution
,”
ASME J. Fluids Eng.
,
132
, p.
011301
.10.1115/1.4000648
5.
Raju
,
R.
,
Singh
,
S.
,
Hsiao
,
C.
, and
Chahine
,
G.
,
2011
, “
Study of Pressure Wave Propagation in a Two-Phase Bubbly Mixture
,”
ASME J. Fluids Eng.
,
133
, p.
121302
.10.1115/1.4005263
6.
Ishikura
,
S.
,
Kogawa
,
H.
,
Futakawa
,
M.
,
Kikuchi
,
K.
,
Hinoa
,
R.
, and
Arakawa
,
C.
,
2003
, “
Bubble Dynamics in the Thermal Shock Problem of the Liquid Metal Target
,”
J. Nucl. Mater.
,
318
(
15
), pp.
113
121
.10.1016/S0022-3115(03)00086-2
7.
Futakawa
,
M.
,
Kogawa, H., Hasegawa, S., Ida, M., Haga, K., Wakui, T., Naoe, T., Tanaka, N., Matsumoto, Y., Ikeda, Y.
,
2007
, “R&D on Pressure-Wave Mitigation Technology in Mercury Targets,” Proceedings 18th Meeting of the International Collaboration on Advanced Neutron Sources (ICANS-XVIII), Dongguan, Guangdong, PR China, April 2007, p. 557.
8.
Okita
,
K.
,
Fujiwara
,
A.
,
Takagi
,
S.
,
Matsumoto
,
Y.
, and
Futakawa
,
M.
,
2006
, “
Numerical Study on a Mitigation Strategy Using Micro Bubbles for Cavitation Erosion Caused by a Thermal Shock in Liquid Mercury
,”
Proceedings of the Sixth International Symposium on Cavitation CAV2006
, Wageningen, The Netherlands.
9.
Ellison
,
A. H.
,
Klemm
,
R. B.
,
Schwartz
,
A. M.
,
Grubb
,
L. S.
, and
Petrash
,
D. A.
,
1967
, “
Contact Angles of Mercury on Various Surfaces and the Effect of Temperatures
,”
J. Chem. Eng. Data
,
12
(
4
), pp
607
609
.10.1021/je60035a037
10.
Chaudhuri
,
A.
,
Osterhoudt
,
C.
, and
Sinha
,
D.
,
2012
, “
An Algorithm for Determining Volume Fractions in Two-Phase Liquid Flows by Measuring Sound Speed
,”
ASME J. Fluids Eng.
,
13
(
10
), p.
101301
.10.1115/1.4007265
11.
Medwin
,
H.
,
1977
, “
Counting Bubbles Acoustically: A Review
,”
Ultrasonics
,
15
, pp.
7
13
.10.1016/0041-624X(77)90005-1
12.
Caflisch
,
R. E.
,
Miksis
,
M. J.
,
Papanicolau
,
G. C.
, and
Ting
,
L.
,
1985
, “
Effective Equations for Wave Propagation in Bubbly Liquids
,”
J. Fluid Mech.
,
153
, pp.
259
273
.10.1017/S0022112085001252
13.
Wu
,
X.
, and
Chahine
,
G. L.
,
2010
, “
Development of an Acoustic Instrument for Bubble Size Distribution Measurement
,”
J. Hydrodyn.
, Ser. B,
22
(
5
), pp.
330
336
.10.1016/S1001-6058(09)60214-6
14.
MacIntyre
,
F.
,
1986
, “
On Reconciling Optical and Acoustical Bubble Spectra in the Mixed Layer
,”
Oceanic Whitecaps
,
E. C.
Monahan
and
G.
Macniocaill
, eds.,
Reidell
,
New York
, pp.
75
94
.
15.
Commander
,
K. W.
, and
Prosperetti
,
A.
,
1989
, “
Linear Pressure Waves in Bubbly Liquids: Comparison Between Theory and Experiments
,”
J. Acoust. Soc. Am.
,
85
, pp.
732
746
.10.1121/1.397599
16.
Duraiswami
,
R.
,
Prabhukumar
,
S.
,
Chahine
,
G. L.
,
1998
, “
Bubble Counting Using an Inverse Acoustic Scattering Method
,”
J. Acoust. Soc. Am.
,
104
(
5
), pp.
2699
2717
.10.1121/1.423854
17.
Chahine
,
G. L.
,
Kalumuck
,
K. M.
,
Cheng
,
J. Y.
, and
Frederick
,
G. S.
,
2001
, “
Validation of Bubble Distribution Measurements of the ABS Acoustic Bubble Spectrometer With High Speed Video Photography
,”
Proceedings of the 4th International Symposium on Cavitation
, California Institute of Technology, Pasadena, CA.
18.
Chahine
,
G. L.
, and
Kalumuck
,
K. M.
,
2003
, “
Development of Near Real Time Instrument for Nuclei Measurements: The ABS Acoustic Bubble Spectrometer
,”
Proceedings of the 4th Joint ASME—JSME Joint Fluids Engineering Conference
, Honolulu, HI.
19.
Chahine
,
G. L.
,
Choi
,
J.-K.
, and
Hsiao
,
C.-T.
,
2012
, “
Development of a Bubble Generator Suitable for Spallation Neutron Source (SNS) Shock Mitigation Applications
,” Technical Report No. 2M8017-DOE-II-Bub-1, Dynaflow, Inc., Jessup, MD.
20.
Brennen
,
C.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
Oxford, UK
.
21.
Billet
,
M. L.
,
1984
, “
Cavitation Nuclei Measurements
,”
Proceedings of the International Symposium on Cavitation Inception
, FED-Vol.
16
, pp.
33
42
.
22.
Franklin
,
R. E.
,
1992
, “
A Note on the Radius Distribution Function for Micro-bubbles of Gas in Water
,”
ASME Cavit. Multiphase Flow Forum
,
135
, pp.
77
85
.
You do not currently have access to this content.