The turbulent wake development of a circular cylinder with a single stepwise discontinuity in diameter was investigated experimentally using flow visualization and two-component Laser Doppler Velocimetry (LDV). A single step cylinder is comprised of two cylinders of different diameters (D and d). Experiments were performed at a Reynolds number (ReD) of 1050 and a diameter ratio (D/d) of two. A combination of hydrogen bubble and laser induced fluorescence techniques allowed visualization of complex vortex dynamics in the near wake. The results show that turbulent vortex shedding from a single step cylinder occurs in three distinct cells of constant shedding frequency. The differences in frequency and strengths between vortices in the cells lead to complex vortex interactions at the cell boundaries. The results demonstrate that vortex splitting, half-loop vortex connections, and direct cross-boundary vortex connections occur near the cell boundaries. A comparative analysis of flow visualizations and velocity measurements is used to characterize the main vortex cells and the attendant vortex interactions, producing a simplified model of vortex dynamics in the step cylinder wake for ReD = 1050 and D/d = 2.

References

1.
Berger
,
E.
, and
Wille
,
R.
,
1972
, “
Periodic Flow Phenomena
,”
Ann. Rev. Fluid Mech.
,
4
, pp.
313
340
.10.1146/annurev.fl.04.010172.001525
2.
Williamson
,
C. H. K.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Ann. Rev. Fluid Mech.
,
28
, pp.
477
539
.10.1146/annurev.fl.28.010196.002401
3.
Norberg
,
C.
,
2003
, “
Fluctuating Lift on a Circular Cylinder: Review and New Measurements
,”
J. Fluids Struct.
,
17
, pp.
57
96
.10.1016/S0889-9746(02)00099-3
4.
Okamoto
,
T.
, and
Yagita
,
M.
,
1973
, “
The Experimental Investigation of the Flow Past a Circular Cylinder of Finite Length Placed Normal to the Plane Surface in a Uniform Stream
,”
Bull. JSME
,
16
, pp.
805
814
.10.1299/jsme1958.16.805
5.
Zdravkovich
,
M. M.
,
Brand
, V
. P.
,
Mathew
,
G.
, and
Weston
,
A.
,
1989
, “
Flow Past Short Circular Cylinders With Two Free Ends
,”
J. Fluid Mech.
,
203
, pp.
557
575
.10.1017/S002211208900159X
6.
Lewis
,
C. G.
, and
Gharib
,
M.
,
1992
, “
An Exploration of the Wake Three Dimensionalities Caused by a Local Discontinuity in Cylinder Diameter
,”
Phys. Fluids A
,
4
, pp.
104
117
.10.1063/1.858489
7.
Inoue
,
O.
, and
Sakuragi
,
A.
,
2008
, “
Vortex Shedding from a Circular Cylinder of Finite Length at Low Reynolds Numbers
,”
Phys. Fluids
,
20
, p.
033601
.10.1063/1.2844875
8.
Morton
,
C.
, and
Yarusevych
,
S.
,
2012
, “
An Experimental Investigation of Flow Past a Dual Step Cylinder
,”
Exp. Fluids
,
52
, pp.
69
83
.10.1007/s00348-011-1186-z
9.
Williamson
,
C. H. K.
,
1989
, “
Oblique and Parallel Modes of Vortex Shedding in the Wake of a Circular Cylinder at Low Reynolds Number
,”
J. Fluid Mech.
,
206
, pp.
579
627
.10.1017/S0022112089002429
10.
Gaster
,
M.
,
1969
, “
Vortex Shedding from Slender Cones at Low Reynolds Numbers
,”
J. Fluid Mech.
,
38
, pp.
565
576
.10.1017/S0022112069000346
11.
Afgan
,
I.
,
Moulinec
,
C.
,
Prosser
,
R.
, and
Laurence
,
D.
,
2007
, “
Large Eddy Simulation of Turbulent Flow for Wall Mounted Cantilever Cylinders of Aspect Ratio 6 and 10
,”
Int. J. Heat Fluid Flow
,
28
, pp.
561
574
.10.1016/j.ijheatfluidflow.2007.04.014
12.
Dunn
,
W.
, and
Tavoularis
,
S.
,
2011
, “
Vortex Shedding from a Step Cylinder in a Spanwise Sheared Flow
,”
Phys. Fluids
,
23
, p.
035109
.10.1063/1.3560385
13.
Dunn
,
W.
, and
Tavoularis
,
S.
,
2006
, “
Experimental Studies of Vortices Shed from Cylinders With a Step Change in Diameter
,”
J. Fluid Mech.
,
555
, pp.
409
437
.10.1017/S002211200600927X
14.
Morton
,
C.
, and
Yarusevych
,
S.
,
2010
, “
Vortex Shedding in the Wake of a Step Cylinder
,”
Phys. Fluids
,
22
, p.
083602
.10.1063/1.3459157
15.
Norberg
,
C.
,
1992
, “
An Experimental Study of the Flow Around Cylinders Joined With a Step in Diameter
,”
Proceedings of the 11th Australasian Fluid Mechanics Conference
, Hobart, Australia, pp.
507
510
.
16.
Ko
,
N. W. M.
,
Leung
,
W. L.
, and
Au
,
H.
,
1982
, “
Flow Behind Two Coaxial Circular Cylinders
,”
ASME J. Fluids Eng.
104
, pp.
223
227
.10.1115/1.3241814
17.
Ko
,
N. W. M.
, and
Chan
,
A. S. K.
,
1990
, “
In the Intermixing Region Behind Circular Cylinders With Stepwise Change of the Diameter
,”
Exp. Fluids
,
9
, pp.
213
221
.
18.
Ko
,
N. W. M.
, and
Chan
,
A. S. K.
,
1992
, “
Wakes Behind Circular Cylinders With Stepwise Change of Diameter
,”
Exp. Therm. Fluid Sci.
,
5
, pp.
182
187
.10.1016/0894-1777(92)90004-O
19.
Chua
,
L. P.
,
Liu
,
C. Y.
, and
Chan
,
W. K.
,
1998
, “
Measurements of a Step-Cylinder
,”
Int. Commun. Heat Mass Transfer
,
25
, pp.
205
215
.10.1016/S0735-1933(98)00007-4
20.
Yagita
,
M.
,
Kojima
,
Y.
, and
Matsuzaki
,
K.
,
1984
, “
On Vortex Shedding from Circular Cylinder With Step
,”
Bull. JSME
,
27
, pp.
426
431
.10.1299/jsme1958.27.426
21.
Adrian
,
R. J.
, and
Yao
,
C. S.
,
1987
, “
Power Spectra of Fluid Velocities Measured by Laser Doppler Velocimetry
,”
Exp. Fluids
5
, pp.
17
28
.
22.
Dunn
,
W.
,
2004
, “
Vortex Shedding from Cylinders With Step-Changes in Diameter in Uniform and Shear Flows
,” Ph.D. thesis, University of Ottawa, Ottawa, ON.
23.
Timme
,
A.
,
1957
, “
Uber die Geschwindigkeitsverteilung in Wirbelen
,”
Zng. Arch.
,
25
, pp.
205
225
.
24.
Davies
,
M. E.
,
1976
, “
A Comparison of the Wake Structure of a Stationary and Oscillating Bluff Body Using a Conditional Averaging Technique
,”
J. Fluid Mech.
75
, pp.
209
231
.10.1017/S0022112076000189
You do not currently have access to this content.