This paper presents a new profile modeling method and multifidelity optimization procedure for the solid rocket motor contoured nozzle design. Two quartic splines are proposed to construct the nozzle divergent section profile, and the coefficients of the splines' functions are calculated by a fortran program. Two-dimensional axisymmetric and three-dimensional compressible Navier–Stokes equations with Re-Normalisation Group (RNG) k-ε turbulent models solve the flow field as low- and high-fidelity models, respectively. An optimal Latin hypercube sampling method produces the sampling points, and Kriging functions establish the surrogate model combining with the low- and high-fidelity models. Finally, the adaptive simulated annealing algorithm is selected to complete the profile optimization, with the objectives of maximizing the thrust and the total pressure recovery coefficient. The optimization improves the thrust by 4.27%, and enhances the recovery coefficient by 4.63%. The result shows the proposed profile modeling method is feasible and effective to enhance the nozzle performance. The multifidelity optimization strategy is valid for improving the computational efficiency.

References

References
1.
Sutton
,
G. P.
, and
Biblarz
,
O.
,
2001
,
Rocket Propulsion Elements
,
John Wiley & Sons Inc.
,
New York
, Ch. 3.
2.
Flamm
,
J. D.
,
Deere
,
K. A.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
,
2005
, “
An Experimental Study of a Dual Throat Fluidic Thrust Vectoring Nozzle Concept
,” AIAA Paper No. 2005-3503.
3.
Zebbiche
,
T.
, and
Youbi
,
Z. E.
,
2007
, “
Supersonic Two-Dimensional Minimum Length Nozzle Design at High Temperature Application for Air
,”
Chinese J. Aeronaut.
,
20
, pp.
29
39
.10.1016/S1000-9361(07)60004-1
4.
Dittakavi
,
N.
,
Chunekar
,
A.
, and
Frankel
,
S.
,
2010
, “
Large Eddy Simulation of Turbulent-Cavitation Interactions in a Venturi Nozzle
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121311
.10.1115/1.4001971
5.
Deere
,
K. A.
,
Flamm
,
J. D.
,
Berrier
,
B. L.
, and
Johnson
,
S. K.
,
2007
, “
Computational Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle Concept for Supersonic Aircraft Application
,” AIAA Paper No. 2007-5085.
6.
Hussaini
,
M. M.
, and
Korte
,
J. J.
,
1996
, “
Investigation of Low-Reynolds-Number Rocket Nozzle Design Using PNS-based Optimization Procedure
,” NASA Technical Memorandum 1996-110295.
7.
Vlassov
,
D.
,
Vargas
,
J. V. C.
, and
Ordonez
,
J. C.
,
2007
, “
The Optimization of Rough Surface Supersonic Nozzles
,”
Acta Astronaut.
,
61
, pp.
866
872
.10.1016/j.actaastro.2007.01.068
8.
Lijo
,
V.
,
Heuy
,
D. K.
,
Toshiaki
,
S.
, and
Matsuo
,
S.
,
2010
, “
Numerical Simulation of Transient Flows in a Rocket Propulsion Nozzle
,”
Int. J. Heat Fluid FL.
,
31
, pp.
409
417
.10.1016/j.ijheatfluidflow.2009.12.005
9.
Yumusak
,
M.
,
2013
, “
Analysis and Design Optimization of Solid Rocket Motors in Viscous Flows
,”
Comput. Fluids
,
75
, pp.
22
34
.10.1016/j.compfluid.2013.01.011
10.
Ali
,
K.
, and
Liang
G.
,
2012
, “
An Integrated Approach for Optimization of Solid Rocket Motor
,”
Aerosp. Sci. Technol.
,
17
, pp.
50
64
.10.1016/j.ast.2011.03.006
11.
Alexeenko
,
A. A.
, and
Levin
,
D. A.
,
2002
, “
Numerical Modelling of Axisymmetric and Three-dimensional Flows in Microelectro Mechanical Systems Nozzles
,”
AIAA J.
,
40
(
5
), pp.
897
904
.10.2514/3.15139
12.
Louisos
,
W. F.
, and
Hitt
,
D. L.
,
2007
, “
Heat Transfer & Viscous Effects in 2D & 3D Supersonic Micro-Nozzle Flows
,” AIAA Paper No. 2007-3987.
13.
Mack
,
Y.
,
Goell
,
T.
,
Shyy
,
W.
, and
Haftka
,
R.
,
2007
, “
Surrogate Model-Based Optimization Framework: A Case Study in Aerospace Design
,”
Stud. Comp. Intel.
,
51
, pp.
323
342
.10.1007/978-3-540-49774-5
14.
Bucher
,
C.
, and
Most
,
T.
,
2008
, “
A Comparison of Approximate Response Functions in Structural Reliability Analysis
,”
Probabilist. Eng. Mech.
,
23
, pp.
154
163
.10.1016/j.probengmech.2007.12.022
15.
Yu
,
K.
,
Yang
,
X.
, and
Yue
,
Z.
,
2011
, “
Aerodynamic and Heat Transfer Design Optimization of Internally Cooling Turbine Blade Based Different Surrogate Models
,”
Struct. Multidiscip. O.
,
44
(
1
), pp.
75
83
.10.1007/s00158-010-0583-x
16.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2003
, “
An Efficient Algorithm for Constructing Optimal Design of Computer Experiments
,”
2003 ASME Design Automation Conference
, Chicago, IL, Paper No. ETC-DAC48760.
17.
Basudhar
,
A.
, and
Missoum
,
S.
,
2009
, “
A Sampling-Based Approach for Probabilistic Design With Random Fields
,”
Comput. Method Appl. M.
,
198
, pp.
3647
3655
.10.1016/j.cma.2009.07.003
18.
Bandler
,
J. W.
,
Koziel
,
S.
, and
Madsen
,
K.
,
2008
, “
Editorial-Surrogate Modelling and Space Mapping for Engineering Optimization
,”
Optim. Eng.
,
9
, pp.
307
310
.10.1007/s11081-008-9043-5
19.
Leifsson
,
L.
, and
Koziel
,
S.
,
2010
, “
Multi-Fidelity Design Optimization of Transonic Airfoils Using Physics-Based Surrogate Modelling and Shape-Preserving Response Prediction
,”
J. Comput. Sci.
,
1
, pp.
98
106
.10.1016/j.jocs.2010.03.007
20.
Forrester
,
A. I. J.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
, pp.
50
79
.10.1016/j.paerosci.2008.11.001
21.
Collins
,
K. B.
,
2008
, “
A Multi-Fidelity Framework for Physics Based Rotor Blade Simulation and Optimization
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
22.
Zhang
,
M.
, and
Shen
,
Y.
,
2008
,“
Three-Dimensional Simulation of Meandering River Based on 3-D RNG k Turbulence Model
,”
J. Hydrodyn.
,
20
(
4
), pp.
448
455
.10.1016/S1001-6058(08)60079-7
23.
Sasena
,
M. J.
,
2002
, “
Flexibility and Efficiency Enhancements for Constrained Global Design Optimization With Kriging Approximations
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
24.
Yin
,
H.
,
2005
, “
Kriging Model Approach to Modeling Study on Relationship Between Molecular Quantitative Structures and Chemical Properties
,” Ph.D. thesis, Hong Kong Baptist University, Hong Kong.
You do not currently have access to this content.