A novel two-equations model for computing the flow properties of a spatially-developing, incompressible, zero-pressure-gradient, turbulent boundary layer over a smooth, flat wall is developed. The mean streamwise velocity component inside the boundary layer is described by the Reynolds-averaged Navier–Stokes equation where the Reynolds shear stress is given by an extended mixing-length model. The nondimensional form of the mixing length is described by a polynomial function in terms of the nondimensional wall normal coordinate. Moreover, a stream function approach is applied with a leading-order term described by a similarity function. Two ordinary differential equations are derived for the solution of the similarity function along the wall normal coordinate and for its streamwise location. A numerical integration scheme of the model equations is developed and enables the solution of flow properties. The coefficients of the mixing-length polynomial function are modified at each streamwise location as part of solution iterations to satisfy the wall and far-field boundary conditions and adjust the local boundary layer thickness, δ99.4, to a location where streamwise speed is 99.4% of the far-field streamwise velocity. The elegance of the present approach is established through the successful solution of the various flow properties across the boundary layer (i.e., mean streamwise velocity, viscous stress, Reynolds shear stress, skin friction coefficient, and growth rate of boundary layer among others) from the laminar regime all the way to the fully turbulent regime. It is found that results agree with much available experimental data and direct numerical simulations for a wide range of Reθ based on the momentum thickness (Reθ) from 15 up to 106, except for the transition region from laminar to turbulent flow. Furthermore, results shed light on the von Kármán constant as a function of Reθ, the possible four-layer nature of the mean streamwise velocity profile, the universal profiles of the streamwise velocity and the Reynolds shear stress at high Reθ, and the scaling laws at the outer region.

References

References
1.
von Kármán
,
T.
,
1930
, “
Mechanishe Änlichkeit und Turbulenz
,”
Proceedings of the Third International Congress on Applied Mechanics
, Vol.
85
, Stockholm, Sweden.
2.
Nikuradse
,
J.
,
1932
, “
Laws of Turbulent Flow in Smooth Pipes
,” NASA Report No. TT-F-10359.
3.
Prandtl
,
L.
,
1933
, “
Recent Results of Turbulence Research
,” NACA Report No. TM 720.
4.
Millikan
,
C. M.
,
1938
, “
Critical Discussion of Turbulent Boundary Flows in Channels and Circular Tubes
,”
Proceedings of the 5th International Congress on Applied Mechanics
,
Wiley
,
New York
, pp.
386
392
.
5.
Yuan
,
S. W.
,
1967
,
Foundations of Fluid Mechanics
,
Prentice-Hal, Inc.
,
Englewood Cliffs, NJ
, pp.
357
399
.
6.
Panton
,
R. L.
,
2005
,
Incompressible Flow
,
3rd ed.
,
John Wiley & Sons, Inc.
,
New York
.
7.
Österlund
,
J. M.
,
1999
, “
Experimental Studies of Zero-Pressure-Gradient Turbulent Boundary-Layer Flow
,” Ph.D. thesis, Department of Mechanics, Royal Institute of Technology, Stockholm, Sweden.
8.
Österlund
,
J. M.
,
Johansson
,
A. V.
,
Nagib
,
H. M.
, and
Hites
,
M. H.
,
2000
, “
A Note of The Overlap Region in a Turbulent Boundary Layer
,”
Phys. Fluids
,
12
, pp.
1
4
.10.1063/1.870250
9.
Kuethe
,
A. M.
, and
Chow
,
C.-Y.
,
1998
,
Foundations of Aerodynamics
,
5th ed.
,
John Wiley & Sons, Inc.
,
New York
.
10.
Van Driest
,
E. R.
,
1956
, “
On Turbulent Flow Near a Wall
,”
J. Aerosp. Sci.
,
23
, pp.
1007
1011
.
11.
Coles
,
D.
,
1956
, “
The Law of The Wake in The Turbulent Boundary Layer
,”
J. Fluid Mech.
,
1
, pp.
191
226
.10.1017/S0022112056000135
12.
Blasius
,
H.
,
1913
, “
Das Ähnlichkeitsgesetz bei Reibungsvorgangen in Flüssigkeiten
,”
VDI Forschungsh.
,
131
, pp. 1–12
13.
Prandtl
,
L.
,
1927
, “
Über den Reigungswiderstand Strömender Luft
,” Reports of the Aerod. Versuchsanst, Göttingen, Germany, 3rd Series.
14.
Prandtl
,
L.
,
1931
, “
Zur turbulentent Stromung in Rohren und längs Platten
,” Reports of the Aerod. Versuchsanst, Göttingen, Germany, 4th Series.
15.
George
,
W. K.
, and
Castillo
,
L.
,
1997
, “
Zero-Pressure-Gradient Turbulent Boundary Layer
,”
ASME Appl. Mech. Rev.
,
50
, pp.
689
729
.10.1115/1.3101858
16.
Wosnik
,
M.
,
Castillo
,
L.
, and
George
,
W. K.
,
2000
, “
A Theory For Turbulent Pipe and Channel Flows
,”
J. Fluid Mech.
,
421
, pp.
115
145
.10.1017/S0022112000001385
17.
Zagarola
,
M. V.
, and
Smits
,
A. J.
,
1998
, “
A New Mean Velocity Scaling For Turbulent Boundary Layers
,” ASME Paper No. FEDSM98-4950.
18.
Zagarola
,
M. V.
, and
Smits
,
A. J.
,
1998
, “
Mean-Flow Scaling of Turbulent Pipe Flow
,”
J. Fluid Mech.
,
373
, pp.
33
79
.10.1017/S0022112098002419
19.
Barenblatt
,
G. I.
,
1993
, “
Scaling Laws For Fully Developed Shear Flow. Part 1 Basic Hypotheses and Analysis
,”
J. Fluid Mech.
,
248
, pp.
513
520
.10.1017/S0022112093000874
20.
Buschmann
,
M. H.
, and
Gad-el-Hak
,
M.
,
2003
, “
Debate Concerning The Mean-Velocity Profile of a Turbulent Boundary Layer
,”
AIAA J.
,
41
(
4
), pp.
565
572
.10.2514/2.1994
21.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
22.
Wei
,
T.
,
Fife
,
P.
,
Klewicki
,
J.
, and
McMurtry
,
P.
,
2004
, “
Properties of The Mean Momentum Balance in Turbulent Boundary Layer, Pipe and Channel Flows
,”
J. Fluid Mech.
,
522
, pp.
303
327
.10.1017/S0022112004001958
23.
Buschmann
,
M. H.
,
2006
, “
Structure of The Canonical Turbulent Wall-Bounded Flow
,”
AIAA J.
,
44
(
11
), pp.
2500
2503
.10.2514/1.19172
24.
Klewicki
,
J. C.
,
Foss
,
J. F.
, and
Wallace
,
J. M.
,
1998
,
Flow at Ultra-High Reynolds and Rayleigh Numbers
,
R. J.
Donnelly
and
K. R.
Sreenivasan
, eds.,
Springer
,
New York
.
25.
De Graaff
,
D. B.
, and
Eaton
,
J. K.
,
2000
, “
Reynolds Number Scaling of The Flat-Plate Turbulent Boundary Layer
,”
J. Fluid Mech.
,
422
(
31
), pp.
319
346
.10.1017/S0022112000001713
26.
Castillo
,
L.
, and
Johansson
,
T. G.
,
2002
, “
The Effects of The Upstream Conditions on a Low Reynolds Number Turbulent Boundary Layer With Zero Pressure Gradient
,”
J. Turbul.
,
3
, p. N31.10.1088/1468-5248/3/1/031
27.
Carlier
,
J.
, and
Stanislas
,
M.
,
2005
, “
Experimental Study of Eddy Structures in The Turbulent Boundary Layer Using Particle Image Velocimetry
,”
J. Fluid Mech.
,
535
, pp.
143
188
.10.1017/S0022112005004751
28.
Nickels
,
T. B.
,
Marusic
,
I.
,
Hafez
,
S. M.
, and
Chong
,
M. S.
,
2005
, “
Evidence of the k-1 Law in a High Reynolds Number Turbulent Boundary Layer
,”
Phys. Rev. Lett.
,
95
(
7
), p.
074501
.10.1103/PhysRevLett.95.074501
29.
Nagib
,
H. M.
,
Chauhan
,
K. A.
, and
Monkewitz
,
P. A.
,
2007
, “
Approach to an Asymptotic State for Zero-Pressure-Gradient Turbulent Boundary Layers
,”
Philos. Trans. R. Soc. Lond., Ser. A
,
365
(
1852
), pp.
755
770
.10.1098/rsta.2006.1948
30.
Örlu
,
R.
,
Fransson
,
J. H. M.
, and
Alfredsson
,
P. H.
,
2010
, “
On Near Wall Measurements of Wall Bounded Flows - The Necessity of an Accurate Determination of the Wall Position
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
353
387
.10.1016/j.paerosci.2010.04.002
31.
Wu
,
X.
, and
Moin
,
P.
,
2009
, “
Direct Numerical Simulation of Turbulence in a Nominally Zero-Pressure-Gradient Flat-Plate Boundary Layer
,”
J. Fluid Mech.
,
630
, pp.
5
41
.10.1017/S0022112009006624
32.
Schlatter
,
P.
, and
Örlu
,
R.
,
2010
, “
Assessment of Direct Numerical Simulation Data of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
659
, pp.
116
126
.10.1017/S0022112010003113
33.
Araya
,
G.
,
Castillo
,
L.
,
Meneveau
,
C.
, and
Jansen
,
K.
,
2011
, “
A Dynamic Multi-Scale Approach for Turbulent Inflow Boundary Conditions in Spatially Developing Flows
,”
J. Fluid Mech.
,
670
, pp.
581
605
.10.1017/S0022112010005616
34.
Schlichting
,
H.
,
1968
,
Boundary-Layer Theory
,
McGraw Hill
,
New York
, pp.
635
667
.
35.
Rusak
,
Z.
, and
Meyerholz
,
J.
,
2006
, “
Mean Velocity of Fully-Developed Turbulent Pipe Flows
,”
AIAA J.
,
44
(
11
), pp.
2793
2797
.10.2514/1.15054
36.
Butcher
,
J. C.
,
2003
,
Numerical Methods for Ordinary Differential Equations
,
Wiley
,
New York
.
37.
Smith
,
D. W.
, and
Walker
,
J. H.
,
1959
, “
Skin-Friction Measurements in Incompressible Flow
,” NACA Report No. R 26.
38.
George
,
W. K.
,
2006
, “
Recent Advancements Toward the Understanding of Turbulent Boundary Layers
,”
AIAA J.
,
44
(
11
), pp.
2435
2449
.10.2514/1.19951
39.
Nikuradse
,
J.
, and
Reichardt
,
H.
,
1945
, “
Heat Transfer Through Turbulent Friction Layers
,” NACA Report No. TM 1047.
40.
East
,
L. F.
,
Sawyer
,
W. G.
, and
Nash
,
C. R.
,
1979
, “
An Investigation of the Structure of Equilibrium Turbulent Boundary Layers
,” RAE Technical Report No. 79040.
41.
Clauser
,
F.
,
1954
, “
Turbulent Boundary Layers in Adverse Pressure Gradients
,”
J. Aeronaut. Sci.
,
21
, pp.
91
108
.10.2514/8.2938
42.
Coles
,
D. E.
, and
Hirst
,
E. A.
,
1968
, “
Computation of Turbulent Boundary Layers
,”
Proceedings of the AFOSR-IFP Stanford Conference on Turbulent Boundary-Layer Prediction
, Vol.
2
, Thermosciences Divisions, Stanford University, Stanford, CA.
43.
McKeon
,
B. J.
,
Li
,
J.
,
Jiang
,
W.
,
Morrison
,
J. F.
, and
Smits
,
A. J.
,
2004
, “
Further Observations on the Mean Velocity Distribution in Fully Developed Pipe Flow
,”
J. Fluid Mech.
,
501
, pp.
135
147
.10.1017/S0022112003007304
44.
Perry
,
A. E.
,
Hafez
,
S.
, and
Chong
,
M. S.
,
2001
, “
A Possible Reinterpretation of the Princeton Superpipe Data
,”
J. Fluid Mech.
,
439
, pp.
395
401
.10.1017/S0022112001004840
45.
Inoue
,
M.
, and
Pullin
,
D. I.
,
2011
, “
Large-Eddy Simulation of the Zero-Pressure-Gradient Turbulent Boundary Layer Up to Reθ=O(1012)
,”
J. Fluid Mech.
,
686
, pp.
507
533
.10.1017/jfm.2011.342
46.
Webster
,
B. E.
,
Shephard
,
M. S.
,
Rusak
,
Z.
, and
Flaherty
,
J. E.
,
1993
, “
Automated Adaptive Time-Discontinuous Finite-Element Method for Unsteady Compressible Airfoil Aerodynamics
,”
AIAA J.
,
32
(
4
), pp.
748
757
.10.2514/3.12049
You do not currently have access to this content.