The flow around a circular cylinder with porous material coating (PMC) is numerically investigated based on unsteady Reynolds-averaged Navier–Stokes (URANS) method at subcritical Reynolds number. The results are compared with some available results in the open literature. The interaction of PMC with the near wake of a circular cylinder such as streamline, vorticity field, and shear stress are studied in detail. Subsequently, the fluctuation forces and velocity distribution in the boundary layer are analyzed and the effect of various thicknesses of PMC is investigated. The numerical results reveal that PMC has prominently modified the flow characteristic of the near wake of circular cylinder and significantly mitigated the fluctuations of aerodynamic forces from two aspects of frequency and amplitude. It means that the vortex shedding from the bluff body is suppressed. It also is found that the thickness of the PMC is a sensitive parameter to the aerodynamic forces and velocity distribution in the boundary layer. Furthermore, the mean drag can be reduced to a certain extent when the thickness is appropriate. It is expected that the modification of flow characteristic and aerodynamic forces is closely related to the flow-induced noise reduction. Those results will be helpful to understand the mechanism of flow control on bluff body flow by using porous material coating and accumulate meaningful information for further industrial application.

References

References
1.
Yoo
,
S. P.
, and
Lee
,
D. Y.
,
2008
, “
Time-Delayed Phase-Control for Suppression of the Flow-Induced Noise From an Open Cavity
,”
Appl. Acoust.
,
69
(
3
), pp.
215
224
.10.1016/j.apacoust.2006.11.005
2.
Gad-El-Hak
,
M.
,
2000
,
Flow-Control: Passive, Active, and Reactive Flow Management
,
Cambridge University Press
,
Cambridge, UK
.
3.
You
,
D.
,
Choi
,
H.
,
Choi
,
M.
, and
Kang
,
S.
,
1998
, “
Control of Flow-Induced Noise Behind a Circular Cylinder Using Splitter Plates
,”
AIAA J.
,
36
(
11
), pp.
1961
1967
.10.2514/2.322
4.
Ali
,
M. S. M.
,
Doolan
,
C. J.
, and
Wheatley
,
V.
,
2011
, “
The Sound Generated by a Square Cylinder With a Splitter Plate at Low Reynolds Number
,”
J. Sound Vib.
,
330
(
15
), pp.
3620
3635
.10.1016/j.jsv.2011.03.008
5.
Ünal
,
U. O.
, and
Atlar
,
M.
,
2010
, “
An Experimental Investigation Into the Effect of Vortex Generators on the Near-Wake Flow of a Circular Cylinder
,”
Exper. Fluids
,
48
(
6
), pp.
1059
1079
.10.1007/s00348-009-0791-6
6.
Heine
,
B.
,
Schwermer
,
T.
, and
Raffel
,
M.
,
2010
, “
The Effect of Vortex Generators on the Flow Around a Circular Cylinder
,” 15th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal.
7.
Revell
,
J. D.
,
Kuntz
,
H. L.
,
Balena
,
F. J.
,
Horne
,
C.
,
Storms
,
B. L.
, and
Dougherty
,
R. P.
,
1997
, “
Trailing-Edge Flap Noise Reduction by Porous Acoustic Treatment
,” AIAA Paper, 97-1646-CP.
8.
Khorrami
,
M. R.
, and
Choudhari
,
M. M.
,
2003
, “
Application of Passive Porous Treatment to Slat Trailing Edge Noise
,” NASA/TM-2003-212416.
9.
Bruneau
,
C. H.
, and
Mortazavi
,
I.
,
2004
, “
Passive Control of the Flow Around a Square Cylinder Using Porous Media
,”
Int. J. Num. Meth. Fluid
,
46
(
4
), pp.
415
433
.10.1002/fld.756
10.
Bruneau
,
C. H.
,
Mortazavi
, I
.
, and
Gilliéron
,
P.
,
2008
, “
Passive Control Around the Two-Dimensional Square Back Ahmed Body Using Porous Devices
,”
ASME J. Fluids Eng.
,
130
, p.
061101
.10.1115/1.2917423
11.
Angland
,
D.
, and
Zhang
,
X.
,
2009
, “
Measurements of Flow Around a Flap Side Edge With Porous Edge Treatment
,”
AIAA J.
,
47
(
7
), pp.
1660
1671
.10.2514/1.39311
12.
Sueki
,
T.
,
Takaishi
,
T.
,
Ikeda
,
M.
,
Arai
,
N.
,
2010
, “
Application of Porous Material to Reduce Aerodynamic Sound From Bluff Bodies
,”
Fluid Dyn. Res.
,
42
(
1
), pp.
1
14
.10.1088/0169-5983/42/1/015004
13.
Bhattacharyya
,
S.
, and
Singh
,
A. K.
,
2009
, “
Reduction in Drag and Vortex Shedding Frequency Through Porous Sheath Around a Circular Cylinder
,”
Int. J. Num. Meth. Fluids
,
65
(
6
), pp.
683
698
.10.1002/fld.2210
14.
Geyer
,
T.
,
Sarradj
,
E.
, and
Fritzsche
,
C.
,
2010
, “
Measurement of the Noise Generation at the Trailing Edge of Porous Airfoils
,”
Exper. Fluids
,
48
(
2
), pp.
291
308
.10.1007/s00348-009-0739-x
15.
Bae
,
Y.
, and
Moon
,
Y. J.
,
2011
, “
Effect of Passive Porous Surface on the Trailing-Edge Noise
,”
Phys. Fluids
,
23
(
12
), p.
126101
.10.1063/1.3662447
16.
Bae
,
Y.
, and
Moon
,
Y. J.
,
2012
, “
Computation of Flow Past a Flat Plate with Porous Trailing Edge Using a Penalization Method
,”
Comput. Fluids
,
66
(
15
), pp.
39
51
.10.1016/j.compfluid.2012.06.002
17.
Rosetti
,
G. F.
,
Vaz
,
G.
, and
Fujarra
,
A. L. C.
,
2012
, “
URANS Calculations for Smooth Circular Cylinder Flow in a Wide Solution Verification
,”
ASME J. Fluids Eng.
,
134
, p.
121103
.10.1115/1.4007571
18.
Vafai
,
K.
,
1984
, “
Convective Flow and Heat Transfer in Variable-Porosity Media
,”
J. Fluid Mech.
,
147
, pp.
233
259
.10.1017/S002211208400207X
19.
Hsu
,
C. T.
, and
Cheng
,
P.
,
1990
, “
Thermal Dispersion in a Porous Medium
,”
Int. J. Heat Mass Transf.
,
33
(
8
), pp.
1587
1597
.10.1016/0017-9310(90)90015-M
20.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Progress
,
48
(
2
), pp.
89
-
94
.
21.
Alazmi
,
B.
, and
Vafai
,
K.
,
2000
, “
Analysis of Variants Within the Porous Media Transport Models
,”
ASME J. Heat Transf.
,
122
, pp.
303
326
.10.1115/1.521468
22.
Revell
,
J. D.
,
Prydz
,
R. A.
, and
Hays
,
A. P.
,
1977
, “
Experimental Study of Airframe Noise vs. Drag Relationship for Circular Cylinder
,” Lockheed Report 28074, Final Report NASA Contract, NASA-14403.
23.
Norberg
,
C.
,
2003
, “
Fluctuating Lift on a Circular Cylinder: Review and New Measurements
,”
J. Fluids Struct.
,
17
(
1
), pp.
57
96
.10.1016/S0889-9746(02)00099-3
24.
Norberg
,
C.
,
1987
, “
Effects of Reynolds Number and a Low-Intensity Freestream Turbulence on the Flow Around a Circular Cylinder
,” Chalmers University, Goteborg, Sweden, Technological Publications 87/2, S-412-96.
25.
Cox
,
J. S.
,
Brentner
,
K. S.
, and
Rumsey
,
L.
,
1998
, “
Computation of Vortex Shedding and Radiated Sound for a Circular Cylinder: Subcritical to Transcritical Reynolds Numbers
,”
Theoret. Computat. Fluid Dyn.
,
12
, pp.
233
253
.10.1007/s001620050108
26.
Oreslli
,
R. M.
,
Meneghini
,
J. R.
, and
Saltara
,
F.
,
2009
, “
Two and Three-Dimensional Simulation of Sound Generated by Flow Around a Circular Cylinder
,” 15th AIAA/CEAS Aeroacoustics Conference, AIAA 2009-3270.
27.
Tadrist
,
H.
,
Martin
,
R.
, and
Tadrist
,
L.
,
1990
, “
Experimental Investigation of Fluctuating Forces Exerted on a Cylindrical Tube (Reynolds Numbers from 3000 to 30,000)
,”
Phys. Fluids A
,
2
(
12
), pp.
2176
2182
.10.1063/1.857804
28.
Lam
,
K.
,
Li
,
J. Y.
, and
So
,
R.M.C.
,
2003
, “
Force Coefficients and Strouhal Numbers of Four Cylinders in Cross Flow
,”
J. Fluids Struct.
,
18
, pp.
305
324
.10.1016/j.jfluidstructs.2003.07.008
29.
Peltzer
,
R. D.
, and
Rooney
,
D. M.
,
1985
, “
Near Wake Properties of a Strumming Marine Cable: an Experimental Study
,”
ASME J. Fluids Eng.
,
107
(
1
), pp.
86
91
.10.1115/1.3242446
30.
Breuer
,
M.
,
2000
, “
A Challenging Test Case for Large Eddy Simulation: High Reynolds Number Circular Cylinder Flow
,”
Int. J. Heat Fluid Flow
,
21
(
5
), pp.
648
654
.10.1016/S0142-727X(00)00056-4
31.
Gloerfelt
,
X.
,
Perot
,
F.
,
Bailly
,
C.
, and
Juve
,
D.
,
2005
, “
Flow-Induced Cylinder Noise Formulated as a Diffraction Problem for Low Mach Numbers
,”
J. Sound Vib.
,
287
(
1–2
), pp.
129
151
.10.1016/j.jsv.2004.10.047
32.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
1997
,
Hydrodynamics Around Cylindrical Structures
,
World Scientific
,
Singapore
.
33.
Curle
,
N.
,
1955
, “
The Influence of Solid Boundaries Upon Aerodynamic Sound
,”
Proc. R. Soc. London A Math. Phys. Sci.
,
231
, pp.
505
514
.10.1098/rspa.1955.0191
34.
Zhao
,
M.
, and
Cheng
,
L.
,
2010
, “
Finite Element Analysis of Flow Control Using Porous Media
,”
Ocean Eng.
,
37
(
14–15
), pp.
1357
1366
.10.1016/j.oceaneng.2010.07.003
You do not currently have access to this content.