Velocity and momentum decay characteristics of a submerged viscoplastic non-Newtonian jet are studied within the steady laminar flow regime. The governing mass and momentum conservation equations along with the Bingham rheological model are solved numerically using a finite-difference scheme. A parametric study is performed to reveal the influence of the initial velocity profile, flow inertia, and yield stress presence on the flow field characteristics. Two initial velocity profiles are considered, a top-hat and fully developed pipe jets. The centerline velocity decay is found to be more rapid for the pipe jet than the top-hat one when the fluid is Newtonian while the opposite trend is observed for yield stress Bingham fluids. The decay in the momentum flux of the pipe jet is always less than that of the top-hat jet. Momentum and velocity based jet depths of penetration are introduced and used to analyze the obtained flow field information for a wide range of Reynolds and yield numbers. Depths of penetration are found to linearly increase with the Reynolds number and substantially decrease with the yield number. The presence of yield stress significantly reduces the momentum and velocity penetration depths of submerged top-hat and pipe jets. Penetration depths of yield stress fluids are shown to be more than an order of magnitude smaller than the ones corresponding to Newtonian fluids.

References

References
1.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
2008
,
Non-Newtonian Flow and Applied Rheology, Second Edition: Engineering Applications
,
Butterworth-Heinemann
,
London
.
2.
Landfried
,
D. T.
,
Jana
,
A.
, and
Kimber
,
M. L.
,
2012
, “
Characterization of the Behavior of Confined Laminar Round Jets
,” ASME Paper No. FEDSM2012-72257.
3.
Milanovic
,
I. M.
, and
Hammad
,
K. J.
,
2010
, “
PIV Study of the Near-Field Region of a Turbulent Round Jet
,” ASME Paper No. FEDSM-ICNMM2010-31139.
4.
Bird
,
R. B.
,
Dai
,
G. C.
, and
Yarusso
,
B. J.
,
1983
, “
The Rheology and Flow of Viscoplastic Materials
,”
Rev. Chem. Eng.
,
1
(
1
), pp.
1
70
.
5.
Ellwood
,
K. R. J.
,
Georgiou
,
G. C.
,
Papanastasiou
,
T. C.
, and
Wilkes
,
J.O.
,
1990
, “
Laminar Jets of Bingham Plastic Liquids
,”
J. Rheol.
,
34
, pp.
787
812
.10.1122/1.550144
6.
Papanastasiou
,
T. C.
,
1987
, “
Flow of Materials With Yield
,”
J. Rheol.
,
31
(
5
), pp.
385
403
.10.1122/1.549926
7.
Shekarriz
,
A.
,
Hammad
,
K. J.
, and
Powell
,
M. R.
,
1997
, “
Evaluation of Scaling Correlations for Mobilization of Double-Shell Tank Waste
,” Report No. PNNL-11737.
8.
Gauglitz
,
P. A.
,
Wells
,
B. E.
,
Bamberger
,
J. A.
,
Fort
,
J. A.
,
Chun
,
J.
, and
Jenks
,
J. J.
,
2010
, “
The Role of Cohesive Particle Interactions on Solids Uniformity and Mobilization During Jet Mixing: Testing Recommendations
,” Report No. PNNL-19245.
9.
Serth
,
R. W.
, and
Mayaguez
,
P. R.
,
1972
, “
The Axisymmetric Free Laminar Jet of a Power-Law Fluid
,”
ZAMP
,
23
, pp.
131
138
.10.1007/BF01593210
10.
Mitwally
,
E. M.
,
1978
, “
Solutions of Laminar Jet Flow Problems for Non-Newtonian Power-Law Fluids
,”
ASME J. Fluids Eng.
,
100
(
3
), pp.
363
366
.10.1115/1.3448682
11.
Kumar
,
K. R.
,
Rankin
,
G. W.
, and
Sridhar
,
K.
,
1984
, “
Laminar Length of a Non-Newtonian Fluid Jet
,”
J. Non-Newtonian Fluid Mech.
,
15
, pp.
13
27
.10.1016/0377-0257(84)80025-7
12.
Jordan
,
C.
,
Rankin
,
G. W.
, and
Sridhar
,
K.
,
1992
, “
A Study of Submerged Pseudoplastic Laminar Jets
,”
J. Non-Newtonian Fluid Mech.
,
41
, pp.
323
337
.10.1016/0377-0257(92)87005-V
13.
Shekarriz
,
A.
, and
Hammad
,
K. J.
,
1997
, “
Submerged Jet Flows of Newtonian and Pseudoplastic Non-Newtonian Fluids
,”
Album of Visualization
,
14
, pp.
23
24
.
14.
Jafri
,
I. H.
, and
Vradis
,
G.C.
,
1998
, “
The Evolution of Laminar Jets of Herschel-Bulkley Fluids
,”
Int. J. Heat Mass Transfer
,
41
, pp.
3575
3588
.10.1016/S0017-9310(98)00050-7
15.
Hammad
,
K. J.
,
2000
, “
Effect of Hydrodynamic Conditions on Heat Transfer in a Complex Viscoplastic Flow Field
,”
Int. J. Heat Mass Transfer
,
43
(
6
), pp.
945
962
.10.1016/S0017-9310(99)00179-9
16.
Vradis
,
G. C.
, and
Hammad
,
K. J.
,
1998
, “
Strongly Coupled Block-Implicit Solution Technique for Non-Newtonian Convective Heat Transfer Problems
,”
Numer. Heat Transfer, Part B
,
33
, pp.
79
97
.10.1080/10407799808915024
17.
Hammad
,
K. J.
,
2012
, “
Depth of Penetration of a Submerged Viscoplastic Non-Newtonian Jet
,” ASME Paper No. FEDSM2012-72456.
18.
Hammad
,
K. J.
,
Ötügen
,
M. V.
,
Vradis
,
G. C.
, and
Arik
,
E. B.
,
1999
, “
Laminar Flow of a Nonlinear Viscoplastic Fluid Through an Axisymmetric Sudden Expansion
,”
ASME J. Fluids Eng.
,
121
(
2
), pp.
488
496
.10.1115/1.2822235
19.
Hammad
,
K. J.
,
Vradis
,
G. C.
, and
Ötügen
,
M. V.
,
2001
, “
Laminar Flow of a Herschel-Bulkley Fluid Over an Axisymmetric Sudden Expansion
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
588
594
.10.1115/1.1378023
20.
Mitsoulis
,
E.
, and
Huilgol
,
R. R.
,
2004
, “
Entry flows of Bingham Plastics in Expansions
,”
J. Non-Newtonian Fluid Mech.
,
142
, pp.
207
217
.10.1016/j.jnnfm.2003.10.007
21.
Wang
,
C. H.
, and
Ho
,
J. R.
,
2008
, “
Lattice Boltzmann Modeling of Bingham Plastics
,”
Physica A
,
387
(
19–20
), pp.
4740
4748
.10.1016/j.physa.2008.04.008
22.
Sánchez–Sanza
,
M.
,
Rosalesb
,
M.
, and
Sánchezb
,
A. L.
,
2010
, “
The Hydrogen Laminar Jet
,”
Int. J. Hydrogen Energy
,
35
(
8
), pp.
3919
3927
.10.1016/j.ijhydene.2010.01.081
23.
Hammad
,
K. J.
, and
Shekarriz
,
A.
,
1998
, “
Turbulence in Confined Axisymmetric Jets of Newtonian and Non-Newtonian Fluids
,”
Proceedings of the ASME 1998 Fluids Engineering Summer Meeting
, Paper No. FEDSM98-5272.
You do not currently have access to this content.