Simplified models were widely used for analysis of peristaltic transport caused by contraction and expansion of an extensible tube. Each of these models has its own assumptions, and therefore, weakness. To get rid of the limitations imposed by the assumptions, a numerical procedure is employed to simulate this pumping flow in the present study. In earlier studies, the frame of reference adopted moves with the peristaltic speed of the vibrating wall so that the flow becomes steady. The flow characteristics in a wavelength were the main concern. In our calculations, a channel of finite length with a flexible wall is considered. Pressures are prescribed at the inlet and outlet boundaries. The computational grid is allowed to move according to the oscillation of the wall. Another state-of-the-art technique employed is to construct the grid in an unstructured manner to deal with the variable geometry of the duct. The effects of dimensionless parameters, such as amplitude ratio, wave number, Reynolds number, and back pressure on the pumping performance are examined. Details of the peristaltic flow structure are revealed. Also conducted is the comparison of numerical results with the theoretical predictions obtained from the lubrication model to determine the suitability of this theory.

References

References
1.
Shapiro
,
A. H.
,
Jaffrin
,
M. Y.
, and
Weinberg
,
S. L.
,
1969
, “
Peristaltic Pumping With Long Wavelengths at Low Reynolds Number
,”
J. Fluid Mech.
,
37
, pp.
799
825
.10.1017/S0022112069000899
2.
Weinberg
,
S. L.
,
Eckstein
,
E. C.
, and
Shapiro
,
A. H.
,
1971
, “
An Experimental Study of Peristaltic Pumping
,”
J. Fluid Mech.
,
49
, pp.
461
479
.10.1017/S0022112071002209
3.
Mishra
,
M.
, and
Rao
,
A. R.
,
2003
, “
Peristaltic Transport of a Newtonian Fluid in an Asymmetric Channel
,”
Z. Angew. Math. Phys.
,
54
, pp.
532
550
.10.1007/s00033-003-1070-7
4.
Hayat
,
T.
, and
Ali
,
N.
,
2008
, “
Effect of Variable Viscosity on the Peristaltic Transport of a Newtonian Fluid in an Asymmetric Channel
,”
Appl. Math. Modelling
,
32
, pp.
761
774
.10.1016/j.apm.2007.02.010
5.
Reddy
,
M. V. S.
,
Mishra
,
M.
,
Sreenadh
,
S.
, and
Rao
,
A. R.
,
2005
, “
Influence of Lateral Walls on Peristaltic Flow in a Rectangular Duct
,”
ASME J. Fluids Eng.
,
127
, pp.
824
827
.10.1115/1.1994876
6.
Ravi Kumar
,
Y. V. K.
,
Krishna
,
S. V. H. N.
,
Ramana Murthy
,
M. V.
, and
Sreenadh
,
S.
,
2010
, “
Unsteady Peristaltic Pumping in a Finite Length Tube With Permeable Wall
,”
ASME J. Fluids Eng.
,
132
, p.
101201
.10.1115/1.4002518
7.
Srinivas
,
S.
, and
Kothandapani
,
M.
,
2008
, “
Peristaltic Transport in an Asymmetric Channel With Heat Transfer - A Note
,”
Int. Commun. Heat Mass Transfer
,
35
, pp.
514
522
.10.1016/j.icheatmasstransfer.2007.08.011
8.
Jiménez-Lozano
,
J.
, and
Sen
,
M.
,
2010
, “
Streamline Topologies of Two- Dimensional Peristaltic Flow and Their Bifurcations
,”
Chem. Eng. Process.
,
49
, pp.
704
715
.10.1016/j.cep.2009.10.005
9.
Misra
,
J. C.
, and
Pandey
,
S. K.
,
2002
, “
Peristaltic Transport of Blood in Small Vessels: Study of a Mathematical Model
,”
Comput. Math. Appl.
,
43
, pp.
1183
1193
.10.1016/S0898-1221(02)80022-0
10.
Misra
,
J. C.
, and
Maiti
,
S.
,
2012
, “
Peristaltic Pumping of Blood through Small Vessels of Varying Cross-Section
,”
ASME J. Appl. Mech.
,
79
, p.
061003
.10.1115/1.4006635
11.
Rao
,
A. R.
, and
Mishra
,
M.
,
2004
, “
Peristaltic Transport of a Power-Law Fluid in a Porous Tube
,”
J. Non-Newtonian Fluid Mech.
,
121
, pp.
163
174
.10.1016/j.jnnfm.2004.06.006
12.
Ravi Kumar
,
Y. V. K.
,
Krishna Kumari
P.
,
Ramana Murthy
,
M. V.
, and
Sreenadh
,
S.
,
2011
, “
Peristaltic Transport of a Power-Law Fluid in an Asymmetric Channel Bounded by Permeable Walls
,”
Adv. Appl. Sci. Res.
,
2
, pp.
396
406
. Available at http://www.pelagiaresearchlibrary.com/advances-in-applied-science/vol2-iss3/AASR-2011-2-3-396-406.pdf
13.
Nadeem
,
S.
,
Akram
,
S.
,
Hayat
,
T.
, and
Hendi
,
A. A.
,
2012
, “
Peristaltic Flow of a Carreau Fluid in a Rectangular Duct
,”
ASME J. Fluids Eng.
,
134
, p.
041201
.10.1115/1.4005727
14.
Noreen
,
S.
,
Alsaedi
,
A.
, and
Hayat
,
T.
,
2012
, “
Peristaltic Flow of Pseudoplastic Fluid in an Asymmetric Channel
,”
ASME J. Appl. Mech.
,
79
, p.
054501
.10.1115/1.4006259
15.
Ali
,
N.
, and
Hayat
,
T.
,
2008
, “
Peristaltic Flow of a Micropolar Fluid in an Asymmetric Channel
,”
Comput. Math. Appl.
,
55
, pp.
589
608
.10.1016/j.camwa.2007.06.003
16.
Tripathi
,
D.
,
2011
, “
Numerical Study on Creeping Flow of Burgers' Fluids Through a Peristaltic Tube
,”
ASME J. Fluids Eng.
,
133
, p.
121104
.10.1115/1.4005316
17.
Fung
,
Y. C.
, and
Yih
,
C. S.
,
1968
, “
Peristaltic Transport
,”
ASME J. Appl. Mech.
,
45
, pp.
669
675
.10.1115/1.3601290
18.
Yin
,
F. C. P.
, and
Fung
,
Y. C.
,
1971
, “
Comparison of Theory and Experiment in Peristaltic Transport
,”
J. Fluid Mech.
,
47
, pp.
93
112
.10.1017/S0022112071000958
19.
Wilson
,
D. E.
, and
Panton
,
R. L.
,
1979
, “
Peristaltic Transport due to Finite Amplitude Bending and Contraction Waves
,”
J. Fluid Mech.
,
90
, pp.
145
159
.10.1017/S0022112079002111
20.
Selverov
,
K. P.
, and
Stone
,
H. A.
,
2001
, “
Peristaltically Driven Channel Flows With Applications Toward Micromixing
,”
Phys. Fluids
,
13
, pp.
1837
1859
.10.1063/1.1377616
21.
Yi
,
M.
,
Bau
,
H. H.
, and
Hu
,
H.
,
2002
, “
Peristaltically Induced Motion in a Closed Cavity With Two Vibrating Walls
,”
Phys. Fluids
,
14
, pp.
184
197
.10.1063/1.1425841
22.
Abd Elnaby
,
M. A.
, and
Haroun
,
M. H.
,
2008
, “
A New Model for Study the Effect of Wall Properties on Peristaltic Transport of a Viscous Fluid
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
, pp.
752
762
.10.1016/j.cnsns.2006.07.007
23.
Usha
,
S.
, and
Rao
,
A. R.
,
2000
, “
Effects of Curvature and Inertia on the Peristaltic Transport in a Two-Fluid System
,”
Int. J. Eng. Sci.
,
38
, pp.
1355
1375
.10.1016/S0020-7225(99)00042-7
24.
Rao
,
A. R.
, and
Mishra
,
M.
,
2004
, “
Nonlinear and Curvature Effects on Peristaltic Flow of a Viscous Fluid in an Asymmetric Channel
,”
Acta Mech.
,
168
, pp.
35
59
.10.1007/s00707-004-0079-0
25.
Brown
,
T. D.
, and
Hung
,
T.-K.
,
1977
, “
Computational and Experimental Investigations of Two-Dimensional Nonlinear Peristaltic Flows
,”
J. Fluid Mech.
,
83
, pp.
249
272
.10.1017/S0022112077001189
26.
Takabatake
,
S.
, and
Ayukawa
,
K.
,
1982
, “
Numerical Study of Two-Dimensional Peristaltic Flows
,”
J. Fluid Mech.
,
122
, pp.
439
465
.10.1017/S0022112082002304
27.
Tong
,
P.
, and
Vawter
,
D.
,
1972
, “
An Analysis of Peristaltic Pumping
,”
ASME J. Appl. Mech.
,
39
, pp.
857
862
.10.1115/1.3422881
28.
Rathish Kumar
,
B. V.
, and
Naidu
,
K. B.
,
1995
, “
A Numerical Study of Peristaltic Flows
,”
Comput. Fluids
,
24
, pp.
161
176
.10.1016/0045-7930(94)00027-V
29.
Pozrikidis
,
C.
,
1987
, “
A Study of Peristaltic Flow
,”
J. Fluid Mech.
,
180
, pp.
515
527
.10.1017/S0022112087001939
30.
Demirdzic
,
I.
, and
Peric
,
M.
,
1988
, “
Space Conservation Law in Finite Volume Calculations of Fluid Flow
,”
Int. J. Numer. Methods Fluids
,
8
, pp.
1037
1050
.10.1002/fld.1650080906
31.
Tsui
,
Y.-Y.
, and
Pan
,
Y.-F.
,
2006
, “
A Pressure-Correction Method for Incompressible Flows Using Unstructured Meshes
,”
Numer. Heat Transfer, Part B
,
49
, pp.
43
65
.10.1080/10407790500344084
32.
Tsui
,
Y.-Y.
, and
Wu
,
T.-C.
,
2010
, “
Use of Characteristic-Based Flux Limiters in a Pressure-Based Unstructured-Grid Algorithm Incorporating High-Resolution Schemes
,”
Numer. Heat Transfer, Part B
,
55
, pp.
14
34
.10.1080/10407790802605091
33.
Tsui
,
Y-Y.
, and
Chang
,
T.-C.
,
2012
, “
A Novel Peristaltic Micropump With Low Compression Ratios
,”
Int. J. Numer. Methods Fluids
,
69
, pp.
1363
1376
.10.1002/fld.2644
34.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
, pp.
40
65
.10.1016/0021-9991(86)90099-9
You do not currently have access to this content.