The objective of this study is to design spacers using topology optimization in a two-dimensional (2D) crossflow reverse osmosis (RO) membrane channel in order to improve the performance of RO processes. This study is the first attempt to apply topology optimization to designing spacers in a RO membrane channel. The performance was evaluated based on the quantity of permeate flux penetrating both the upper and lower membrane surfaces. Here, Navier–Stokes and convection-diffusion equations were employed to calculate the permeate flux. The nine reference models, consisting of combinations of circle, rectangle, and triangle shapes and zig-zag, cavity, and submerged spacer configurations were then simulated using finite element method so that the performance of the model designed by topology optimization could be compared to the reference models. As a result of topology optimization with the allowable pressure drop changes in the channel, characteristics required of the spacer design were determined. The spacer design based on topology optimization was then simplified to consider manufacturability and performance. When the simplified design was compared to the reference models, the new design displayed a better performance in terms of permeate flux and wall concentration at the membrane surface.

References

References
1.
Joyce
,
A.
,
Loureiro
,
D.
,
Rodrigues
,
C.
, and
Castro
,
S.
,
2001
, “
Small Reverse Osmosis Units Using PV Systems For Water Purification In Rural Places
,”
Desalination
,
137
(
1–3
), pp.
39
44
.10.1016/S0011-9164(01)00202-8
2.
Sutzkover
, I
.
,
Hasson
,
D.
, and
Semiat
,
R.
,
2000
, “
Simple Technique For Measuring The Concentration Polarization Level In A Reverse Osmosis System
,”
Desalination
,
131
(
1–3
), pp.
117
127
.10.1016/S0011-9164(00)90012-2
3.
Parekh
,
B. S.
,
1988
,
Reverse Osmosis Technology: Application For High-Purity-Water Production
,
Marcel Dekker
,
New York
.
4.
Song
,
L.
, and
Yu
,
S.
,
1999
, “
Concentration Polarization In Cross-Flow Reverse Osmosis
,”
AIChE J.
,
45
(
5
), pp.
921
928
.10.1002/aic.690450502
5.
Bellucci
,
F.
, and
Pozzi
,
A.
,
1975
, “
Numerical and Analytical Solutions For Concentration Polarization In Hyperfiltration Without Axial Flow
,”
Int. J. Heat Mass Transfer
,
18
(
7–8
), pp.
945
951
.10.1016/0017-9310(75)90188-X
6.
Kim
,
S.
, and
Hoek
,
E. M. V.
,
2005
, “
Modeling Concentration Polarization In Reverse Osmosis Processes
,”
Desalination
,
186
(
1–3
), pp.
111
128
.10.1016/j.desal.2005.05.017
7.
Ma
,
S.
,
Song
,
L.
,
Ong
,
S. L.
, and
Ng
,
W. J.
,
2004
, “
A 2-D Streamline Upwind Petrov/Galerkin Finite Element Model For Concentration Polarization In Spiral Wound Reverse Osmosis Modules
,”
J. Membrane Sci.
,
244
(
1–2
), pp.
129
139
.10.1016/j.memsci.2004.06.048
8.
Ahmad
,
A. L.
,
Lau
,
K. K.
, and
Abu Bakar
,
M. Z.
,
2005
, “
Impact of Different Spacer Filament Geometries On Concentration Polarization Control In Narrow Membrane Channel
,”
J. Membrane Sci.
,
262
(
1–2
), pp.
138
152
.10.1016/j.memsci.2005.06.056
9.
Song
,
L.
, and
Ma
,
S.
,
2005
, “
Numerical Studies of the Impact of Spacer Geometry on Concentration Polarization in Spiral Wound Membrane Modules
,”
Ind. Eng. Chem. Res.
,
44
(
20
), pp.
7638
7645
.10.1021/ie048795w
10.
Ma
,
S.
, and
Song
,
L.
,
2006
, “
Numerical Study On Permeate Flux Enhancement By Spacers In A Crossflow Reverse Osmosis Channel
,”
J. Membrane Sci.
,
284
(
1–2
), pp.
102
109
.10.1016/j.memsci.2006.07.022
11.
Subramani
,
A.
,
Kim
,
S.
, and
Hoek
,
E. M. V.
,
2006
, “
Pressure, Flow, And Concentration Profiles In Open And Spacer-Filled Membrane Channels
,”
J. Membrane Sci.
,
277
(
1–2
), pp.
7
17
.10.1016/j.memsci.2005.10.021
12.
Santos
,
J. L. C.
,
Geraldes
, V
.
,
Velizarov
,
S.
, and
Crespo
,
J. G.
,
2007
, “
Investigation of Flow Patterns And Mass Transfer In Membrane Module Channels Filled With Flow-Aligned Spacers Using Computational Fluid Dynamics (CFD)
,”
J. Membrane Sci.
,
305
(
1–2
), pp.
103
117
.10.1016/j.memsci.2007.07.036
13.
Radu
,
A. I.
,
Vrouwenvelder
,
J. S.
,
van Loosdrecht
,
M. C. M.
, and
Picioreanu
,
C.
,
2010
, “
Modeling the Effect Of Biofilm Formation On Reverse Osmosis Performance: Flux, Feed Channel Pressure Drop And Solute Passage
,”
J. Membrane Sci.
,
365
(
1–2
), pp.
1
15
.10.1016/j.memsci.2010.07.036
14.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies In Structural Design Using A Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.10.1016/0045-7825(88)90086-2
15.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization-Theory, Method And Application
,
Springer
,
Berlin
, Chap. 2, pp.
71
158
.
16.
Borrvall
,
T.
, and
Petersson
,
J.
,
2003
, “
Topology Optimization Of Fluids In Stokes Flow
,”
Int. J. Numer. Methods Fluids
,
41
(
1
), pp.
77
107
.10.1002/fld.426
17.
Evgrafov
,
A.
,
2005
, “
The Limits of Porous Materials in the Topology Optimization of Stokes Flows
,”
Appl. Math. Optim.
,
52
(
3
), pp.
263
277
.10.1007/s00245-005-0828-z
18.
Aage
,
N.
,
Poulsen
,
T.
,
Gersborg-Hansen
,
A.
, and
Sigmund
,
O.
,
2008
, “
Topology Optimization Of Large Scale Stokes Flow Problems
,”
Struct. Multidisc. Optim.
,
35
(
2
), pp.
175
180
.10.1007/s00158-007-0128-0
19.
Andreasen
,
C. S.
,
Gersborg
,
A. R.
, and
Sigmund
,
O.
,
2009
, “
Topology Optimization Of Microfluidic Mixers
,”
Int. J. Numer. Methods Fluids
,
61
(
5
), pp.
498
513
.10.1002/fld.1964
20.
Van Gauwbergen
,
D.
, and
Baeyens
,
J.
,
1997
, “
Macroscopic Fluid Flow Conditions In Spiral-Wound Membrane Elements
,”
Desalination
,
110
(
3
), pp.
287
299
.10.1016/S0011-9164(97)00104-5
21.
Larson
,
R. E.
,
Cadotte
,
J. E.
, and
Petersen
,
R. J.
,
1981
, “
The FT-30 Seawater Reverse Osmosis Membrane–Element Test Results
,”
Desalination
,
38
, pp.
473
483
.10.1016/S0011-9164(00)86092-0
22.
Reddy
,
J. N.
, and
Gartling
,
D. K.
,
2001
,
The Finite Element Method In Heat Transfer And Fluid Dynamics
,
CRC Press
,
Boca Raton, FL
, Chap. 4, pp.
149
253
.
23.
Codina
,
R.
,
1998
, “
Comparison of Some Finite Element Methods For Solving The Diffusion-Convection-Reaction Equation
,”
Comput. Methods Appl. Mech. Eng.
,
156
(
1–4
), pp.
185
210
.10.1016/S0045-7825(97)00206-5
24.
Tezduyar
,
T. E.
, and
Osawa
,
Y.
,
2000
, “
Finite Element Stabilization Parameters Computed From Element Matrices And Vectors
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
3–4
), pp.
411
430
.10.1016/S0045-7825(00)00211-5
25.
Onate
,
E.
, and
Manzan
,
M.
,
2000
, “
Stabilization Techniques For Finite Element Analysis Of Convection-Diffusion Problems
,” International Center For Numerical Methods In Engineering, p.
183
.
26.
Olesen
,
L. H.
,
Okkels
,
F.
, and
Bruus
,
H.
,
2006
, “
A High-Level Programming-Language Implementation Of Topology Optimization Applied To Steady-State Navier–Stokes Flow
,”
Int. J. Numer. Methods Eng.
,
65
(
7
), pp.
975
1001
.10.1002/nme.1468
27.
Svanberg
,
K.
,
1987
, “
The Method Of Moving Asymptotes—A New Method For Structural Optimization
,”
Int. J. Numer. Methods Fluids
,
24
(
2
), pp.
359
373
.10.1002/nme.1620240207
28.
Sigmund
,
O.
, and
Petersson
,
J.
,
1998
, “
Numerical Instabilities In Topology Optimization: A Survey On Procedures Dealing With Checkerboards, Mesh-Dependencies And Local Minima
,”
Struct. Optimiz.
,
16
(
1
), pp.
68
75
.10.1007/BF01214002
29.
Tortorelli
,
D. A.
, and
Michaleris
,
P.
,
1994
, “
Design Sensitivity Analysis: Overview and Review
,”
Inv. Problems Eng.
,
1
(
1
), pp.
71
105
.10.1080/174159794088027573
30.
Stover
,
R. L.
,
2006
, “
Energy Recovery Devices for Seawater Reverse Osmosis
,”
Everything About Water
, pp.
40
45
. Available at: http://67.199.53.244/index.cfm/0/0/55/0/start/31.
You do not currently have access to this content.