In this paper, we study particle transport and deposition in a turbulent square duct flow with an imposed magnetic field using direct numerical simulations (DNS) of the continuous flow and Lagrangian tracking of particles. The magnetic field and the velocity induce a current and the interaction of this current with the magnetic field generates a Lorentz force that brakes the flow and modifies the flow structure. A second-order accurate finite volume method is used to integrate the coupled Navier–Stokes and magnetohydrodynamic (MHD) equations and the solution procedure is implemented on a graphics processing unit (GPU). Magnetically nonconducting particles of different Stokes numbers are continuously injected at random locations in the inlet cross section of the duct and their rates of deposition on the duct walls are studied with and without a magnetic field. Because of the modified instantaneous turbulent flow structures as a result of the magnetic field, the deposition rates and patterns on the walls perpendicular to the magnetic field are lower than those on the walls parallel to the magnetic field.

References

References
1.
Winkler
,
C. M.
,
Rani
,
S. L.
, and
Vanka
,
S. P.
,
2004
, “
Preferential Concentration of Particles in a Fully Developed Turbulent Square Duct Flow
,”
Int. J. Multiphase Flow
,
30
(
1
), pp.
27
50
.10.1016/j.ijmultiphaseflow.2003.11.003
2.
Winkler
,
C. M.
,
Rani
,
S. L.
, and
Vanka
,
S. P.
,
2006
, “
Numerical Study of Particle Wall-Deposition in a Turbulent Square Duct Flow
,”
Powder Tech.
,
170
(
1
), pp.
12
25
.10.1016/j.powtec.2006.08.009
3.
Phares
,
D. J.
, and
Sharma
,
G.
,
2006
, “
A DNS Study of Aerosol Deposition in a Turbulent Square Duct Flow
,”
Aerosol Sci. Tech.
,
40
(
11
), pp.
1016
1024
.10.1080/02786820600919416
4.
Phares
,
D. J.
, and
Sharma
,
G.
,
2006
, “
Turbulent Transport of Particles in a Straight Square Duct
,”
Int. J. Multiphase Flow
,
32
, pp.
823
837
.10.1016/j.ijmultiphaseflow.2006.02.010
5.
Yao
,
J.
, and
Fairweather
,
M.
,
2010
, “
Inertial Particle Resuspension in a Turbulent, Square Duct Flow
,”
Phys. Fluids
,
22
, p.
033303
.10.1063/1.3336013
6.
Yao
,
J.
, and
Fairweather
,
M.
,
2012
, “
Particle Deposition in Turbulent Duct Flows
,”
Chem. Eng. Sci.
,
84
, pp.
781
800
.10.1016/j.ces.2012.09.020
7.
Narayanan
,
C.
, and
Lakehala
,
D.
,
2003
, “
Mechanisms of Particle Deposition in a Fully Developed Turbulent Open Channel Flow
,”
Phys. Fluids
,
15
(
3
), pp.
763
775
.10.1063/1.1545473
8.
Elghobashi
,
S.
,
1994
, ‘‘
On Predicting Particle-Laden Turbulent Flows
,”
Appl. Sci. Res.
,
52
, pp.
309
329
.10.1007/BF00936835
9.
Kulick
,
J.
,
Fessler
,
J.
, and
Eaton
,
J.
,
1994
, “
Particle Response and Turbulence Modification in Fully Developed Channel Flow
,”
J. Fluid Mech.
,
277
, pp.
109
134
.10.1017/S0022112094002703
10.
Friedlander
,
S. K.
, and
Johnstone
,
H. F.
,
1957
, “
Deposition of Suspended Particles From Turbulent Gas Streams
,”
Ind. Eng. Chem.
,
49
(
7
), pp.
1151
1156
.10.1021/ie50571a039
11.
Liu
,
Y. H.
, and
Agarwal
,
J. K.
,
1974
, “
Experimental Observation of Aerosol Deposition in Turbulent Flow
,”
Aerosol Sci.
,
5
, pp.
145
155
.10.1016/0021-8502(74)90046-9
12.
McCoy
,
D. D.
, and
Hanratty
,
T. J.
,
1977
, “
Rate of Deposition of Droplets in Annular Two-Phase Flow
,”
Int. J. Multiphase Flow
,
3
, pp.
319
331
.10.1016/0301-9322(77)90012-X
13.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids
,
3
, pp.
1760
1765
.10.1063/1.857955
14.
Yuan
,
Q.
,
Thomas
,
B. G.
, and
Vanka
,
S. P.
,
2004
, “
Study of Transient Flow and Particle Transport During Continuous Casting of Steel Slabs, Part 1. Fluid Flow
,”
Metallurg. Mater. Trans. B
,
35B
(
4
), pp.
685
702
.10.1007/s11663-004-0009-5
15.
Yuan
,
Q.
,
Thomas
,
B. G.
, and
Vanka
,
S. P.
,
2004
, “
Study of Transient Flow and Particle Transport During Continuous Casting of Steel Slabs, Part 2. Particle Transport
,”
Metallurg. Mater. Trans. B
,
35B
(
4
), pp.
703
714
.10.1007/s11663-004-0010-z
16.
Chaudhary
,
R.
,
Thomas
,
B. G.
, and
Vanka
,
S. P.
,
2012
, “
Effect of Electromagnetic Ruler Braking (EMBr) on Transient Turbulent Flow in Continuous Slab Casting Using Large Eddy Simulations
,”
Metallurg. Mater. Trans. B
,
43B
(
3
), pp.
532
553
.10.1007/s11663-012-9634-6
17.
Chaudhary
,
R.
,
Vanka
,
S. P.
, and
Thomas
,
B. G.
,
2010
, “
Direct Numerical Simulations of Magnetic Field Effects on Turbulent Flow in a Square Duct
,”
Phys. Fluids
,
22
(
7
), p.
075102
.10.1063/1.3456724
18.
Maxey
,
M. R.
, and
Riley
,
J. K.
,
1983
, ‘‘
Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids
,
26
, pp.
883
889
.10.1063/1.864230
19.
Schiller
,
L.
, and
Naumann
,
Z.
,
1935
, “
A Drag Coefficient Correlation
,”
Z. Ver. Deutsch. Ing.
,
77
, pp.
318
320
.
20.
Saffman
,
P. G.
,
1965
, ‘‘
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
, pp.
385
400
.10.1017/S0022112065000824
21.
Shinn
,
A. F.
,
Vanka
,
S. P.
, and
Hwu
,
W. W.
,
2010
, “
Direct Numerical Simulation of Turbulent Flow in a Square Duct Using a Graphics Processing Unit GPU
,”
40th AIAA Fluid Dynamics Conference
, Chicago, IL, June 28–July 1,
AIAA
Paper No. 2010-5029.10.2514/6.2010-5029
22.
Adrian
,
R. J.
,
Christensen
,
K. T.
, and
Liu
,
Z.-C.
,
2000
, “
Analysis and Interpretation of Instantaneous Turbulent Velocity Fields
,”
Experiments Fluids
,
29
, pp.
275
290
.10.1007/s003489900087
23.
Maxey
,
M. R.
,
1987
, “
The Gravitational Settling of Aerosol Particles in Homogeneous Turbulence and Random Flow Fields
,”
J. Fluid Mech.
,
174
, pp.
441
465
.10.1017/S0022112087000193
24.
Brooke
,
J. W.
,
Hanratty
,
T. J.
, and
McLaughlin
,
J. B.
,
1994
, “
Free-Flight Mixing and Deposition of Aerosols
,”
Phys. Fluids
,
8
(
10
), pp.
3404
3415
.10.1063/1.868398
You do not currently have access to this content.