Micro swimming robots offer many advantages in biomedical applications, such as delivering potent drugs to specific locations in targeted tissues and organs with limited side effects, conducting surgical operations with minimal damage to healthy tissues, treatment of clogged arteries, and collecting biological samples for diagnostic purposes. Reliable navigation techniques for micro swimmers need to be developed for navigation, positioning, and localization of robots inside the human body in future biomedical applications. In order to develop simple models to estimate trajectories of magnetically actuated micro swimmers blood vessels and other conduits, effects of the channel wall must be understood well. In this study, swimming of one-link robots with helical tails in stationary fluids inside channels is modeled with Stokes equations and solved numerically with the finite-element method. Lateral and angular velocities of the robot are obtained from force free swimming conditions. Effects of the amplitude and number of helical waves, and the relative size of the body of the swimmer and its radial position on angular and linear velocity vectors of the swimmer are presented.

References

1.
Dreyfus
,
R.
,
Baudry
,
J.
,
Roper
,
M. L.
,
Fermigier
,
M.
,
Stone
,
H. A.
, and
Bibette
,
J.
,
2005
, “
Microscopic Artificial Swimmers
,”
Nature
,
437
(
6
), pp.
862
865
.10.1038/nature04090
2.
Abbott
,
J. J.
,
Peyer
,
K. E.
,
Lagomarsino
,
M. C.
,
Zhang
,
L.
,
Dong
,
L.
,
Kaliakatsos
, I
. K.
, and
Nelson
,
B. J.
,
2009
, “
How Should Microrobots Swim?
,”
Int. J. Robotics Res.
,
28
, pp.
1434
1447
.10.1177/0278364909341658
3.
Ghosh
,
A.
, and
Fischer
,
P.
,
2009
, “
Controlled Propulsion of Artificial Magnetic Nanostructured Propellers
,”
Nano Lett.
,
9
(
6
), pp.
2243
2245
.10.1021/nl900186w
4.
Zhang
,
L.
,
Abbott
,
J. J.
,
Lixin
,
D.
,
Kratochvil
,
B. E.
,
Bell
,
D.
, and
Nelson
,
B. J.
,
2009
, “
Artificial Bacterial Flagella: Fabrication and Magnetic Control
,”
Appl. Phys. Lett.
,
94
(
6
), p.
064107
.10.1063/1.3079655
5.
Tottori
,
S.
,
Zhang
,
L.
,
Peyer
,
K. E.
, and
Nelson
,
B. J.
,
2013
, “
Assembly, Disassembly, and Anomalous Propulsion of Microscopic Helices
,”
Nano Lett.
,
13
, pp.
4263
4268
.10.1021/nl402031t
6.
Martel
,
S.
,
Mohammadi
,
M.
,
Felfoul
,
O.
,
Lu
,
Z.
, and
Pouponneau
,
P.
,
2009
, “
Flagellated Magnetotactic Bacteria as Controlled MRI-Trackable Propulsion and Steering Systems for Medical Nanorobots Operating in the Human Microvasculature
,”
Int. J. Robot. Res.
,
28
, pp.
571
582
.10.1177/0278364908100924
7.
Tabak
,
A. F.
, and
Yesilyurt
,
S.
,
2010
, “
Validated Reduced Order Models for Simulating Trajectories of Bio-inspired Artificial Micro-Swimmers
,”
Conference on Microchannels and Minichannels
, FEDSM2010-ICNMM2010, Montreal, Canada, August 2–4.
8.
Temel
,
F. Z.
, and
Yesilyurt
,
S.
,
2013
, “
Simulation-Based Analysis of Micro-Robots Swimming at the Center and Near the Wall of Circular Mini-Channels
,”
Microfluidics and Nanofluidics
,
14
(
1–2
), pp.
287
298
.10.1007/s10404-012-1047-y
9.
Ramia
,
M.
,
Tullock
,
D. L.
, and
Phan-Thien
,
N.
,
1993
, “
The Role of Hydrodynamic Interaction in the Locomotion of Microorganisms
,”
Biophys. J.
,
65
, pp.
755
778
.10.1016/S0006-3495(93)81129-9
10.
Goto
,
T.
,
Nakata
,
K.
,
Baba
,
K.
,
Nishimura
,
M.
, and
Magariyama
,
Y.
,
2005
, “
A Fluid-Dynamic Interpretation of the Asymmetric Motion of Singly Flagellated Bacteria Swimming Close to a Boundary
,”
Biophys. J.
,
89
(
6
), pp.
3771
3779
.10.1529/biophysj.105.067553
11.
Giacché
,
D.
,
Ishikawa
,
T.
, and
Yamaguchi
,
T.
,
2010
, “
Hydrodynamic Entrapment of Bacteria Swimming Near a Solid Surface
,”
Phys. Rev. E
,
82
, p.
056309
.10.1103/PhysRevE.82.056309
12.
Felderhof
,
B. U.
,
2010
, “
Swimming at Low Reynolds Number of a Cylindrical Body in a Circular Tube
,”
Phys. Fluids
,
22
, p.
113604
.10.1063/1.3522861
13.
Honda
,
T.
,
Arai
,
K. I.
, and
Ishiyama
,
K.
,
1996
, “
Micro Swimming Mechanisms Propelled by External Magnetic Fields
,”
IEEE Trans. Magn.
,
32
, pp.
5085
5087
.10.1109/20.539498
14.
Tabak
,
A. F.
, and
Yesilyurt
,
S.
,
2012
, “
Experiments on In-Channel Swimming of an Untethered Biomimetic Robot with Different Helical Tails
,”
4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Rome, Italy
, June 24–27.
15.
Hancock
,
G. J.
,
1953
, “
The Self-Propulsion of Microscopic Organisms Through Liquids
,”
Proc. R. Soc. London, Ser. A
,
217
, pp.
96
121
.10.1098/rspa.1953.0048
16.
Gray
,
J.
, and
Hancock
,
G. J.
,
1955
, “
The Propulsion of Sea-Urchin Spermatozoa
,”
J. Exp. Biol.
,
32
, pp.
802
814
.
17.
Temel
,
F. Z.
, and
Yesilyurt
,
S.
,
2011
, “
Magnetically Actuated Micro Swimming of Bio-Inspired Robots in Mini Channels
,”
International Conference on Mechatronics (ICM), 2011 IEEE International Conference
,
Istanbul, Turkey
, April 13–15, pp.
342–347
.
18.
COMSOL AB,
2012
,
Comsol Multiphysics User's Guide
.
19.
Acemoglu
,
A.
,
2014
, M.S. thesis, Sabanci University, Istanbul, Turkey, (in progress).
20.
Higdon
,
J. J.
,
1979
. “
The Hydrodynamics of Flagellar Propulsion: Helical Waves
,”
J. Fluid Mech.
,
94
(
2
), pp.
331
351
.10.1017/S0022112079001051
You do not currently have access to this content.