Vortex amplifiers (VA) use fluidic phenomena to modify flow through a containment breach, when used to protect glove box workers from exposure to the contents. The influence of control port geometry on swirl, operating characteristics, global flow, and momentum characteristics is studied experimentally. Shape and size of the control flow channels and the pressure applied at the tangential ports are critical in determining the trajectory of the jet issuing from the tangential ports and deflection of radial flow and vortex strength. Dominance of control-to-exit area ratio is confirmed. A clear improvement in performance is noted for a practical geometry derived from shaped passages of the device. Flow and momentum characteristics provide additional design data. The relationship of swirl number to output flow is demonstrated. Global flow and momentum characteristics provide insight into design and operation that is useful when avoiding back diffusion.

References

References
1.
Kitsios
,
E. E.
, and
Boucher
,
R. F.
,
1985
, “
Prediction of Transport-Delay Surge in Vortex Amplifier Systems
,”
Int. J. Syst. Sci.
,
16
, pp.
1279
1291
.10.1080/00207728508926751
2.
Belesterling
,
C. A.
,
1971
,
Fluidic Systems Design
, Wiley-Interscience, New York.
3.
Foster
,
K.
, and
Parker
,
G. A.
,
1970
,
Fluidics: Components and Circuits
, Wiley-Interscience, New York.
4.
American Society of Heating, Ventilating and Air-Conditioning Engineers Inc.
, “
Glovebox Ventilation Design
,”
Heating, Ventilating and Air-Conditioning Design Guide for Department of Energy Nuclear Facilities
,
M.
Geshwiler
,
L.
Montgomery
, and
M.
Moran
, eds., ASHRAE, Atlanta, GA.
5.
Crossley
,
M. J.
,
2007
, “
Control of Nuclear Gloveboxes and Enclosures Using the No-Moving-Part Vortex Amplifier (VXA)
,”
Proceedings of Waste Management Conference
,
Tucson, AZ, Feb. 25–Mar. 1
.
6.
Francis
,
J.
,
Zhang
,
G.
, and
Parker
,
D.
,
2012
, “
Case Study: Vortex Amplifier Assemblies for Glovebox Applications Containing Radiological Hazard
,”
Proc. Inst. Mech. Eng. Part E
,
226
(
2
), pp.
157
174
.10.1177/0954408911417513
7.
Zhang
,
G.
,
2005
, “
Performance of Reduced-Scale Vortex Amplifiers Used to Control Glovebox Dust
,” Ph.D. thesis, University of Central Lancashire, Preston, UK.
8.
Parker
,
D.
,
2010
, “
Application of Experimental and Computational Fluid Dynamics Techniques to the Design of Vortex-Amplifiers
,” Ph.D. thesis, University of Central Lancashire, Preston, UK.
9.
King
,
C. F.
,
1979
, “
Some Studies of Vortex Devices - Vortex Amplifier Performance and Behaviour
,” Ph.D. thesis, University College, Cardiff, UK.
10.
Wormley
,
D. N.
, and
Richardson
,
H. H.
,
1967
, “
Experimental Investigation and Design Basis for Vortex Amplifiers Operating in the Incompressible Flow Regime
,” Harry Diamond Laboratories, Technical Report No. HDL Project 31131.
11.
King
,
C. F.
,
1985
, “
Vortex Amplifier Internal Geometry and its Effect on Performance
,”
Int. J. Heat Fluid Flow
,
6
, pp.
160
170
.10.1016/0142-727X(85)90004-9
12.
Tippetts
,
J. R.
,
1981
, “
Static Instability in Vortex Amplifier Circuits
,”
Proceedings of 6th International Fluid Control, Measurement and Visualisation Symposium (FLUCOM 81)
, pp.
293
304
.
13.
Boucher
,
R. F.
, and
Kitsios
,
E. E.
,
1983
, “
Instability in Vortex Amplifier Circuits
,”
Proceedings of ASME Annual Winter Meeting 83
, Boston, MA, Nov. 13–18, Paper No. 83-WA/DSC-12.
14.
Blanchard
,
A.
,
1982
, “
Some Characteristics of Fluidic Vortex Amplifiers in Ventilation Control
,”
Inst. Chem. Eng. Symp. Ser.
76
, pp.
210
219
.
15.
Wormley
,
D. N.
, and
Richardson
,
H. H.
,
1970
, “
A Design Basis for Vortex-Type Fluid Amplifiers Operating in the Incompressible Flow Regime
,”
J. Basic Eng.
,
92
, pp.
369
376
.10.1115/1.3425004
16.
Strong
,
R.
,
Boyle
,
K.
, and
Grant
,
J.
,
1975
, “
Gloveboxes and Similar Containments
,” U.S. Patent No. 3,888,556.
17.
Blanchard
,
A.
,
1983
, “
Fluidic Control Devices
,” U.S. Patent No. 4,422,476.
18.
Parker
,
D.
,
Birch
,
M.
, and
Francis
,
J.
,
2011
, “
Computational Fluid Dynamics Studies of Vortex Amplifer Design for the Nuclear Industry – I. Steady State Conditions
,”
ASME J. Fluids Eng
,
133
(
4
), p.
041103
.10.1115/1.4003775
19.
Francis
,
J.
,
Birch
,
M.
, and
Parker
,
D.
,
2012
, “
Computational Fluid Dynamics Studies of Vortex Amplifer Design for the Nuclear Industry – II. Transient Conditions
,”
ASME J. Fluids Eng.
,
134
(
2
), p.
021103
.10.1115/1.4005950
20.
Wormley
,
D. N.
, and
Richardson
,
H. H.
,
1968
, “
Experimental Study of, and Design Basis for, Vortex Amplifiers Operating In the Incompressible Flow Regime
,” Engineering Projects Laboratory, Massachusetts Institute of Technology, Report No. 70167-1.
21.
Rose
,
A.
,
1995
, “
Vortex Amplifier Design Methods
,” BNFL Project Report, Project No. ET5158/1.
22.
Syred
,
N.
,
1969
, “
An Investigation of High Performance Vortex Valves and Amplifiers
,” Ph.D. thesis, University of Sheffield, Sheffield, UK.
23.
Savino
,
J. H.
, and
Keshock
,
E. G.
,
1965
, “
Experimental Profile of Velocity Components and Radial Pressure Distributions in a Vortex Contained in a Short Cylindrical Chamber
,”
Proceedings of 3rd Fluid Amplification Symposium, Harry Diamond Laboratories
.
24.
Streeter
,
V. L.
, and
Wylie
,
E. B.
,
1981
,
Fluid Mechanics
,
1st SI Metric ed.
,
McGraw-Hill Ryerson
,
Toronto, Canada
.
25.
Wormley
,
D. N.
,
1976
, “
A Review of Vortex Diode and Triode Static and Dynamic Design Techniques
,”
Fluid. Q.
,
8
(
1
), pp.
85
112
.
26.
Balakrishnan
,
M. G.
,
Mahule
,
K. N.
, and
Narayan
,
S.
,
1992
, “
Design and Development of a Vortex Amplifier for Pressure Regulation of Glove Boxes
,”
J. Vac. Sci.
Technol., A
,
10
(
6
), pp.
3568
3572
.10.1116/1.577785
27.
Doig
,
R.
,
2013
, personal communication.
You do not currently have access to this content.