Reynolds-Averaged Navier–Stokes (RANS) simulation has been demonstrated to be a powerful and efficient approach for conducting numerical assessment of the hydraulic performance of disinfection systems for water treatment at a much lower cost than physical experiments. Recently, large eddy simulation (LES) has been introduced for the first time as a potentially more accurate alternative to RANS for predicting hydraulic performance of disinfection systems such as baffled contactors (Kim et al., 2010, “Large Eddy Simulation of Flow and Tracer Transport in Multichamber Ozone Contactors,” J. Environ. Eng., 136, pp. 22–31). This gives rise to the need to carefully assess RANS and LES in order to understand under which flow characteristics LES should be recommended instead of the less computationally intensive RANS for predicting hydraulic performance of a disinfection system. To that extent, this manuscript presents results from RANS and LES simulations of flow and tracer transport in a laboratory-scale column contactor and a laboratory-scale baffled contactor. Flow fields, residence time distributions, and characteristic residence times are analyzed. LES is shown to be a more reliable strategy than RANS in simulating tracer transport in column contactors due to its ability to better predict the spatial transition to turbulence characterizing the flow. However, in baffled contactors where such transition does not occur and the flow is characterized by a quasi-steady short circuiting jet and dead zones, RANS performs on par with LES.

References

References
1.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University
,
New York
.
2.
Sagaut
,
P.
, and
Deck
,
S.
,
2009
, “
Large Eddy Simulation for Aerodynamics: Status and Perspectives
,”
Philos. Trans. R. Soc. London A
,
367
, pp.
2849
2860
.10.1098/rsta.2008.0269
3.
Georgiadis
,
N. J.
,
Rizzetta
,
D. P.
, and
Fureby
,
C.
,
2009
, “
Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research
,”
47th Aerospace Science Meeting
,
Orlando, FL
, Jan. 5–8.
4.
Falconer
,
R. A.
, and
Ismail
,
A. I. B. M.
,
1997
, “
Numerical Modeling of Tracer Transport in a Contact Tank
,”
Environ. Int.
,
23
(
6
), pp.
763
773
.10.1016/S0160-4120(97)00088-3
5.
Do-Quang
,
Z.
, and
Laine
,
J. M.
,
1997
, “
Advanced Design of Ozonation Contactor for Drinking Water Treatment: Use of Computational Fluid Dynamics Modeling for Reactor Performance Evaluation
,”
Proc. of the Annual Conference of the American Water Works Association (AWWA)
, Vol. D., Atlanta, GA, p.
531
.
6.
Janex
,
M. L.
,
Savoye
,
P.
,
Do-Quang
,
Z.
,
Blatchley
,
E.
, and
Laîné
,
J. M.
,
1998
, “
Impact of Water Quality and Reactor Hydrodynamics on Wastewater Disinfection by UV, Use of CFD Modeling for Performance Optimization
,”
Proc. of the 1998 19th Biennial Conference of the International Association on Water Quality
, Part 5, Vancouver, Canada.
7.
Wang
,
H.
, and
Falconer
,
R. A.
,
1998
, “
Numerical Modeling of Flow in Chlorine Disinfection Tanks
,”
J. Hydraul. Eng.
,
124
, pp.
918
931
.10.1061/(ASCE)0733-9429(1998)124:9(918)
8.
Wang
,
H.
, and
Falconer
,
R. A.
,
1998
, “
Simulating Disinfection Processes in Chlorine Contact Tanks Using Various Turbulence Models and High-Order Accurate Difference Schemes
,”
Water Res.
,
32
(
5
), pp.
1529
1543
.10.1016/S0043-1354(98)80014-6
9.
Kim
,
D.
,
Kim
,
D. I.
,
Kim
,
J. H.
, and
Stoesser
,
T.
,
2010
, “
Large Eddy Simulation of Flow and Tracer Transport in Multichamber Ozone Contactors
,”
J. Environ. Eng.
,
136
, pp.
22
31
.10.1061/(ASCE)EE.1943-7870.0000118
10.
Huang
,
T. H.
, and
Brouckaert
,
C. J.
,
2004
, “
Application of Computational Fluid Dynamics Modeling to an Ozone Contactor
,”
Water SA
,
30
(
1
), pp.
51
56
.10.4314/wsa.v30i1.5026
11.
Hofman
,
J.
,
Wind
,
D.
,
Wols
,
B.
, and
Uijttewaal
,
W.
,
2007
, “
The Use of CFD Modeling to Determine the Influence of Residence Time Distribution on the Disinfection of Drinking Water in Ozone Contactors
,”
The COMSOL Users Conference
.
12.
Zhang
,
J.
,
Tejada-Martínez
,
A. E.
, and
Zhang
,
Q.
,
2013
, “
RANS Simulation of the Flow and Tracer Transport in a Multi-Chambered Ozone Contactor
,”
J. Environ. Eng.
,
139
(
3
), pp.
450
454
.10.1061/(ASCE)EE.1943-7870.0000648
13.
Zhang
,
J.
,
Tejada-Martínez
,
A. E.
, and
Zhang
,
Q.
,
2013
, “
Hydraulic Efficiency in RANS of the Flow in Multi-Chambered Ozone Contactors
,”
J. Hydraul. Eng.
,
139
(
11
), pp.
1150
1157
.10.1061/(ASCE)HY.1943-7900.0000777
14.
Amini
,
R.
, and
Taghipour
,
R.
,
2011
, “
Numerical Assessment of Hydrodynamic Characteristics in Chlorine Contact Tank
,”
Int. J. Numer. Methods Fluids
,
67
(
7
), pp.
885
898
.10.1002/fld.2394
15.
Wols
,
B. A.
,
Uijttewaal
,
W. S. J.
,
Rietveld
,
L. C.
,
Stelling
,
G. S.
,
vanDijk
,
J. C.
, and
Hofman
,
J. A. M. H.
,
2008
, “
Residence Time Distributions in Ozone Contactors
,”
Ozone: Sci. Eng.
,
30
(
1
), pp.
49
57
.10.1080/01919510701759538
16.
Cockx
,
A.
,
Do-Quang
,
Z.
,
Line
,
A.
, and
Roustan
,
M.
,
1999
, “
Use of Computational Fluid Dynamics for Simulating Hydrodynamics and Mass Transfer in Industrial Ozonation Towers
,”
Chem. Eng. Sci.
,
54
(
21
), pp.
5085
5090
.10.1016/S0009-2509(99)00239-0
17.
Zhang
,
J. P.
,
2006
, “
An Integrated Design Approach for Improving Drinking Water Ozone Disinfection Treatment Based on Computational Fluid Dynamics
,” Ph.D. thesis, University of Waterloo, Waterloo, Canada.
18.
Zhang
,
J. P.
,
Huck
,
M.
,
Anderson
,
B. W.
, and
Stubley
,
D. G.
,
2007
, “
A Computational Fluid Dynamics Based Integrated Disinfection Design Approach for Improvement of Full-Scale Ozone Contactor Performance
,”
Ozone: Sci. Eng.
,
29
(
6
), pp.
451
460
.10.1080/01919510701613420
19.
Bartrand
,
T. A.
, and
Farouk
,
B.
,
2009
, “
Countercurrent Gas/Liquid Flow and Mixing: Implications for Water Disinfection
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
171
184
.10.1016/j.ijmultiphaseflow.2008.08.004
20.
Bolaños
,
E. Q.
,
Ocampo
,
J. T.
, and
Rodríguez
,
L. C.
,
2008
, “
Applicability of Computational Fluid Dynamics to Simulate Ozonation Processes
,” Ingeniería Desarrollo,
24
, pp.
97
116
. Available at: http://www.redalyc.org/pdf/852/85212334008.pdf
21.
Wols
,
B. A.
,
Shao
,
L.
,
Uijttewaal
,
W. S. J.
,
Hofmana
,
J. A. M. H.
,
Rietveld
,
L. C.
, and
van Dijk
,
J. C.
,
2010
, “
Evaluation of Experimental Techniques to Validate Numerical Computations of the Hydraulics Inside a UV Bench-Scale Reactor
,”
Chem. Eng. Sci.
,
65
(
15
), pp.
4491
4502
.10.1016/j.ces.2010.04.013
22.
Talvy
,
S.
,
Debaste
,
F.
,
Martinelli
,
L.
,
Chauveheid
,
E.
, and
Haut
,
B.
,
2011
, “
Development of a Tool, Using CFD, for the Assessment of the Disinfection Process by Ozonation in Industrial Scale Drinking Water Treatment Plants
,”
Chem. Eng. Sci.
,
66
(
14
), pp.
3185
3194
.10.1016/j.ces.2011.02.039
23.
Zhang
,
J.
,
Tejada-Martinez
,
A. E.
,
Zhang
,
Q.
, and
Lei
,
H.
,
2014
, “
Evaluating Hydraulic and Disinfection Efficiencies of a Full-Scale Ozone Contactor Using a RANS-Based Modeling Framework
,”
Water Res.
,
52
, pp.
155
167
.10.1016/j.watres.2013.12.037
24.
Zhang
,
J.
,
Tejada-Martinez
,
A. E.
, and
Zhang
,
Q.
,
2014
, “
Developments in Computational Fluid Dynamics-Based Modeling for Disinfection Technologies Over the Last Two Decades: A Review
,”
Environmen. Model. Softw.
,
58
, pp.
71
85
.10.1016/j.envsoft.2014.04.003
25.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
, pp.
131
138
.10.1016/0094-4548(74)90150-7
26.
Wilcox
,
D. C.
,
1994
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Cañada Flintridge, CA
.
27.
Garrick
,
S. C.
,
Jaberi
,
F. A.
, and
Givi
,
P.
,
1999
, “
Large Eddy Simulation of Scalar Transport in a Turbulent Jet Flow
,”
Second (AFOSR) Conference
, New Brunswick, NJ, June 7–9, pp 155–166.10.1007/978-94-011-4513-8_14
28.
Suto
,
H.
,
Matsubara
,
K.
,
Kobayashi
,
M.
, and
Kaneko
,
Y.
,
2004
, “
Large Eddy Simulation of Flow and Scalar Transport in a Round Jet
,”
Heat Trans. Asian Res.
,
33
, pp.
175
188
.10.1002/htj.20001
29.
Wang
,
B.
,
Zhang
,
H. Q.
, and
Wang
,
X. L.
,
2010
, “
Large-Eddy Simulation of Near-Field Dynamics in a Particle-Laden Round Turbulent Jet
,”
Chin. J. Aeronaut.
,
23
(
2
), pp.
162
169
.10.1016/S1000-9361(09)60200-4
30.
OPENFOAM Foundation, 2010, “
OpenFOAM User Guide version 1.7.1
,” OpenCFD Ltd, http://www.openfoam.com/docs/user/
31.
Mangani
,
L.
,
2008
, “
Development and Validation of an Object Oriented CFD Solver for Heat Transfer and Combustion Modeling in Turbomachinery Applications
,” Ph.D. thesis, Università degli Studi di Firenze, Florence, Italy.
32.
Launder
,
B. E.
,
1978
, “
Heat and Mass Transport
,”
Turbulence
,
P.
Bradshaw
, ed.,
Springer
,
Berlin
, Germany, Chap. 6.
33.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
34.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Monthly Weather Rev.
,
93
, pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
35.
de Villiers
,
E.
,
2006
, “
The Potential of Large Eddy Simulation for the Modelling of Wall Bounded Flows
,” Ph.D. thesis, Imperial College, London.
36.
Kim
,
D.
,
Elovitz
,
M.
,
Roberts
,
P. J. W.
, and
Kim
,
J. H.
,
2010
, “
Using 3D LIF to Investigate and Improve Performance of a Multi-chamber Ozone Contactor
,”
J. AWWA
,
102
(
10
), pp.
61
70
.
37.
Chen
,
C. M.
,
1998
, “
Modeling Drinking Water Disinfection in Ozone Bubble-Diffuser Contactors
,” Ph.D. thesis, Purdue University, West Lafayette, Indiana.
38.
U.S. EPA,
2003
, “
Disinfection Profiling and Benchmarking Guidance Manual
,” Report No. EPA 816-R-03-004.
39.
Crittenden
,
J.
,
Trussell
,
R. R.
,
Hand
,
D. W.
,
Howe
,
K. J.
, and
Tchobanoglous
,
G.
,
2005
,
Water Treatment: Principles and Design
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
40.
Prandtl
,
L.
,
1925
, “
Bericht über Untersuchungen zur Ausgebildeten Turbulenz
,”
Z. Angew. Math, Meth.
,
5
, pp.
136
139
.
You do not currently have access to this content.