In this paper, measurements of velocity and stress fields in rigid pipes are performed by means of planar particle image velocimetry (PIV). The attention is focused onto the effect of Reynolds number and of continuous or pulsating flows by investigating pipe geometries ranging from the straight pipe to the reduced section and bifurcated ones. The obtained results show that, in the tested range, the effect of Reynolds number is limited for straight and reduced section pipes, while significant for the bifurcated one. Independently of Reynolds number, different geometries and forcing (continuous or pulsed) produce strong variations in intensity and spatial distribution of velocity and stress fields. Considering the latter, the contribution of viscous and turbulent stresses are measured separately and compared. Indeed turbulent stresses are always larger than the viscous ones, but the relative intensity is highly variable as also the spatial distribution of maxima and minima. Specifically, in the pulsating flows, this distribution is phase-dependent reflecting the oscillations of regions of flow separation which form especially in reduced section and bifurcated pipes. These results are useful for all engineering applications in which turbulent pipe flows are involved.

References

References
1.
Taylor
,
C. A.
, and
Draney
,
M. T.
,
2004
, “
Experimental and Computational Methods in Cardiovascular Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
197
231
.10.1146/annurev.fluid.36.050802.121944
2.
Taylor
,
C. A.
, and
Figueroa
,
C. A.
,
2009
, “
Patient-Specific Modeling of Cardiovascular Mechanics
,”
Annu. Rev. Biomed. Eng.
,
11
, pp.
109
134
.10.1146/annurev.bioeng.10.061807.160521
3.
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Jansen
,
K. E.
,
Hughes
,
T. J. R.
, and
Taylor
,
C. A.
,
2006
, “
A Coupled Momentum Method for Modeling Blood Flow in Three-Dimensional Deformable Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(41–43), pp.
5685
5706
.10.1016/j.cma.2005.11.011
4.
Moayeri
,
M. S.
, and
Zendehbudi
,
G. R.
,
2003
, “
Effects of Elastic Property of the Wall on Flow Characteristics Through Arterial Stenoses
,”
J. Biomech.
,
36
(4), pp.
525
535
.10.1016/S0021-9290(02)00421-9
5.
Scotti
,
A.
, and
Piomelli
,
U.
,
2000
, “
Numerical Simulation of Pulsating Turbulent Channel Flow
,”
Phys. Fluids
,
13
(
5
), pp.
1367
1384
.10.1063/1.1359766
6.
Bhaganagar
,
K.
,
2008
, “
Direct Numerical Simulation of Unsteady Flow in Channel With Rough Walls
,”
Phys. Fluids
,
20
(10), p.
101508
.10.1063/1.3005859
7.
Carpinlioglu
,
M. O.
, and
Gundogdu
,
M. Y.
,
2001
, “
A Critical Review on Pulsatile Pipe Flow Studies Directing Towards Future Research Topics
,”
Flow Meas. Instrum.
,
12
(3), pp.
163
174
.10.1016/S0955-5986(01)00020-6
8.
Peacock
,
J.
,
Jones
,
T.
,
Tock
,
C.
, and
Lutz
,
R.
,
1998
, “
The Onset of Turbulence in Physiological Pulsatile Flow in a Straight Tube
,”
Exp. Fluids
,
24
(1), pp.
1
9
.10.1007/s003480050144
9.
Grigioni
,
M.
,
Daniele
,
C.
,
D'Avenio
,
G.
, and
Barbaro
,
V.
,
1999
, “
A Discussion on the Threshold Limit for Hemolysis Related to Reynolds Shear Stress
,”
J. Biomech.
,
32
(10), pp.
1107
1112
.10.1016/S0021-9290(99)00063-9
10.
Grigioni
,
M.
,
Daniele
,
C.
,
Davenio
,
G.
, and
Barbaro
,
V.
,
2000
, “
On the Mono-Dimensional Approach to the Estimation of the Highest Reynolds Shear Stress in a Turbulent Flow
,”
J. Biomech.
,
33
(6), pp.
701
708
.10.1016/S0021-9290(99)00230-4
11.
Balducci
,
A.
,
Grigioni
,
M.
,
Querzoli
,
G.
,
Romano
,
G. P.
,
Daniele
,
C.
,
D'Avenio
,
G.
, and
Barbaro
,
V.
,
2004
, “
Investigation of the Flow Field Downstream of an Artificial Heart Valve by Means of PIV and PTV
,”
Exp. Fluids
,
36
(1), pp.
204
213
.10.1007/s00348-003-0744-4
12.
Païdoussis
,
M. P.
,
1989
, “
Chaotic Oscillations of the Autonomous System of a Constrained Pipe Conveying Fluid
,”
J. Sound Vib.
,
135
(
1
), pp.
1
19
.10.1016/0022-460X(89)90750-5
13.
Truesdell
,
R. A.
,
Vorobieff
,
P. V.
,
Sklar
,
L. A.
, and
Mammoli
,
A. A.
,
2003
, “
Mixing of a Continuous Flow of Two Fluids Due to Unsteady Flow
,”
Phys. Rev. E
,
67
(6), p.
066304
.10.1103/PhysRevE.67.066304
14.
Goullet
,
A.
,
Glasgow
,
I.
, and
Aubry
,
N.
,
2006
, “
Effects of Microchannel Geometry on Pulsed Flow Mixing
,”
Mech. Res. Commun.
,
33
(
5
), pp.
739
746
.10.1016/j.mechrescom.2006.01.007
15.
Clark
,
C.
,
1976
, “
The Fluid Mechanics of Aortic Stenosis. I. Theory and Steady Flow Experiments
,”
J. Biomech.
,
9
(8), pp.
521
528
.10.1016/0021-9290(76)90068-3
16.
Clark
,
C.
,
1976
, “
The Fluid Mechanics of Aortic Stenosis. I. Unsteady Flow Experiments
,”
J. Biomech.
,
9
(9), pp.
567
573
.10.1016/0021-9290(76)90097-X
17.
Yousif
,
M. J.
,
Holdsworth
,
D. W.
, and
Poepping
,
T. L.
,
2011
, “
A Blood-Mimicking Fluid for Particle Image Velocimetry With Silicone Vascular Models
,”
Exp. Fluids
,
50
(3), pp.
769
774
.10.1007/s00348-010-0958-1
18.
Oertel
,
H.
,
2010
, “
Biofluid Mechanics
,”
Prandtl Essentials of Fluid Mechanics
,
Springer
,
New York
, Chap. XII.
19.
Deshpande
,
M. D.
, and
Giddens
,
D. P.
,
1980
, “
Turbulence Measurements in a Constricted Tube
,”
J. Fluid Mech.
,
97
(1), pp.
65
89
.10.1017/S0022112080002431
20.
Zendehbudi
,
G. R.
, and
Moayeri
,
M. S.
,
1999
, “
Comparison of Physiological and Simple Pulsatile Flows Through Stenosed Arteries
,”
J. Biomech.
,
32
(9), pp.
959
965
.10.1016/S0021-9290(99)00053-6
21.
Fernandez
,
R. C.
,
De Witt
,
K. J.
, and
Botwin
,
M. R.
,
1976
, “
Pulsatile Flow Through a Bifurcation With Applications to Arterial Disease
,”
J. Biomech.
,
9
(9), pp.
575
580
.10.1016/0021-9290(76)90098-1
22.
Nabavi
,
M.
, and
Siddiqui
,
K.
,
2010
, “
A Critical Review on Advanced Velocity Measurement Techniques in Pulsating Flows
,”
Meas. Sci. Technol.
,
21
(4), p.
042002
.10.1088/0957-0233/21/4/042002
23.
Querzoli
,
G.
,
Falchi
,
M.
, and
Romano
,
G. P.
,
2010
, “
On the Flow Field Generated by a Gradually Varying Flow Through an Orifice
,”
Eur. J. Mech.
,
29
(4), pp.
259
268
.10.1016/j.euromechflu.2010.03.004
24.
Bhaganagar
,
K.
,
2009
, “
Direct Numerical Simulation of Flow in Stenotic Channel to Understand the Effect of Stenotic Morphology on Turbulence
,”
J. Turb.
,
10
(
41
).10.1080/14685240903468796
25.
Manosh
,
C. P.
,
Molla
,
M. M.
, and
Roditi
,
G.
,
2009
, “
Large–Eddy Simulation of Pulsatile Blood Flow
,”
Med. Eng. Phys.
,
31
, pp.
153
159
.
26.
Mi
,
J.
,
Nobes
,
D. S.
, and
Nathan
,
G. J.
,
2001
, “
Influence of Jet Exit Conditions on the Passive Scalar Field of an Axisymmetric Free Jet
,”
J. Fluid Mech.
,
432
, pp.
91
125
.
27.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
1998
,
Fundamentals of Fluid Mechanics
,
3rd ed.
,
Wiley
, Hoboken, NJ, pp.
483
488
.
28.
Gerrard
,
J. H.
,
1971
, “
An Experimental Investigation of the Pulsating Turbulent Water Flow in a Tube
,”
J. Fluid Mech.
,
46
(1), pp.
43
64
.10.1017/S0022112071000399
You do not currently have access to this content.