In this study, a numerical algorithm is developed for simulating the interaction between a fluid and a 2D/axisymmetric hyperelastic body based on a full Eulerian fluid-structure interaction (FSI) method. In this method, the solid volume fraction is used for describing the multicomponent material and the deformation tensor for describing the deformation of the hyperelastic body. The core elements of the simulation method are the constitutive law in the Cauchy stress form and an equation for the transport of the deformation tensor field. A semi-implicit formulation is used for the elastic stress to avoid instability especially for solid with high stiffness. The strain rate has a discontinuity across the fluid/solid interface. For improving the accuracy in capturing the interface, solid is treated as a highly viscous fluid. The viscosity term has the effect of smoothing the velocity and keeping the simulation stable. An experimental setup is used to validate the numerical results. The movement of a sphere made of silicone in air and its impact on a rigid substrate are investigated. The images are captured using a high speed CCD camera and the image processing technique is employed to obtain the required data from the images. For all cases considered, the results are in good agreement with those of the experiment performed in this study and other numerical results reported in the literature.

References

References
1.
Belytschko
,
T.
, and
Kennedy
,
J.
,
1975
, “
Finite Element Approach to Pressure Wave Attenuation by Reactor Fuel Subassemblies
,”
ASME J. Pressure Wave Technol.
, 97(3), pp.
172
177
.10.1115/1.3454291
2.
Donea
,
J.
,
Fasoli-Stella
,
P.
, and
Giuliani
,
S.
,
1976
, “
Finite Element Solution of Transient Fluid-Structure Problems in Lagrangian Coordinates
,”
International Meeting on Fast Reactor Safety and Related Physics
, Chicago, IL, Oct. 8, Vol.
3
, pp.
1427
1435
.
3.
Hirt
,
C.
,
Amsden
,
A.
, and
Cook
,
J.
,
1974
, “
An Arbitrary Lagrangian–Eulerian Computing Method for all Flow Speeds
,”
J. Comput. Phys.
,
14
(
3
), pp.
227
253
.10.1016/0021-9991(74)90051-5
4.
Nitikitpaiboon
,
C.
, and
Bathe
,
K.
,
1993
, “
An Arbitrary Lagrangian–Eulerian Velocity Potential Formulation for Fluid-Structure Interaction
,”
Comput. Struct.
,
47
(
5
), pp.
871
891
.10.1016/0045-7949(93)90364-J
5.
Figueroa
,
C.
,
Vignon
,
I.
,
Jansen
,
K.
,
Hughes
,
T.
, and
Taylor
,
C.
,
2006
, “
A Coupled Momentum Method for Modeling Blood Flow in Three-Dimensional Deformable Arteries
,”
J. Comput. Methods Appl. Mech. Eng.
, 195(41–43), pp.
1
22
.10.1016/j.cma.2005.11.011
6.
Hu
,
H.
,
1996
, “
Direct Simulation of Flows of Solid-Liquid Mixtures
,”
Int. J. Multiphase Flow
,
22
(
2
), pp.
335
352
.10.1016/0301-9322(95)00068-2
7.
Gao
,
T.
, and
Hu
,
H.
,
2009
, “
Deformation of Elastic Particles in Viscous Shear Flow
,”
J. Comput. Phys.
,
228
, pp.
2132
2151
.10.1016/j.jcp.2008.11.029
8.
Haug
,
E. J.
,
1992
,
Intermediate Dynamics
,
Prentice Hall
,
Englewood Cliffs, NJ
.
9.
Wang
,
X.
,
Wang
,
C.
, and
Zhang
,
L. T.
,
2012
, “
Semi Implicit Formulation of the Immersed Finite Element Method
,”
J. Comput. Mech.
,
49
, pp.
421
430
.10.1007/s00466-011-0652-z
10.
Peskin
,
C.
,
1972
, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
, pp.
252
271
.10.1016/0021-9991(72)90065-4
11.
Wang
,
X. S.
, and
Liu
,
W. K.
,
2004
, “
Extended Immersed Boundary Method Using FEM and RKPM
,”
Comput. Methods Appl. Mech. Eng.
,
193
, pp.
1305
1321
.10.1016/j.cma.2003.12.024
12.
Gilmanov
,
A.
, and
Acharya
,
S.
,
2008
, “
A Hybrid Immersed Boundary and Material Point Method for Simulating 3D Fluid-Structure Interaction Problems
,”
Int. J. Numer. Methods Fluids
,
56
, pp.
151
177
.10.1002/fld.1578
13.
Le
,
D. V.
,
Khoo
,
B. C.
, and
Peraire
,
J.
,
2006
, “
An Immersed Interface Method for Viscous Incompressible Flows Involving Rigid and Flexible Boundaries
,”
J. Comput. Phys.
,
220
, pp.
109
138
.10.1016/j.jcp.2006.05.004
14.
Glowinski
,
R.
,
Pan
,
T.
,
Hesla
,
T.
, and
Joseph
,
D.
,
1999
, “
A Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows
,”
Int. J. Multiphase Flow
,
25
, pp.
755
794
.10.1016/S0301-9322(98)00048-2
15.
Hoogstraten
,
P.
,
Slaats
,
P.
, and
Baijens
,
F.
,
1991
, “
An Eulerian Approach to the Finite Element Modeling of Neo-Hookean Rubber Material
,”
Appl. Sci. Res.
,
48
, pp.
193
210
.10.1007/BF02027967
16.
Liu
,
C.
, and
Walkington
,
N.
,
2001
, “
An Eulerian Description of Fluids Containing Visco-Elastic Particles
,”
Arch. Ratio. Mech. Anal.
,
159
, pp.
229
252
.10.1007/s002050100158
17.
Sugiyama
,
K.
,
Ii
,
S.
,
Takeuchi
,
S.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
,
2010
, “
Full Eulerian Simulation of Biconcave Neo-Hookean Particles in a Poiseuille Flow
,”
J. Comput. Mech.
,
46
, pp.
147
157
.10.1007/s00466-010-0484-2
18.
Nagano
,
N.
,
Sugiyama
,
K.
,
Takeuchi
,
S.
,
Ii
,
S.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
,
2010
, “
Full Eulerian Finite Difference Simulation of Fluid Flow in Hyperelastic Wavy Channel
,”
J. Fluid Sci. Technol.
,
5
(
3
), pp.
475
490
.10.1299/jfst.5.475
19.
Sugiyama
,
K.
,
Ii
,
S.
,
Takeuchi
,
S.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
,
2011
, “
A Full Eulerian Finite Difference Approach for Solving Fluid-Structure Coupling Problems
,”
J. Comput. Phys.
,
230
, pp.
596
627
.10.1016/j.jcp.2010.09.032
20.
Ii
,
S.
,
Sugiyama
,
K.
,
Takeuchi
,
S.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
,
2011
, “
An Implicit Full Eulerian Method for the Fluid-Structure Interaction Problem
,”
Int. J. Numer. Methods Fluids
,
65
, pp.
150
165
.10.1002/fld.2460
21.
Sugiyama
,
K.
,
Nagano
,
N.
,
Takeuchi
,
S.
,
Ii
,
S.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
,
2011
, “
Particle-in-Cell Method for Fluid-Structure Interaction Simulations of Neo-Hookean Tube Flows
,”
Theor. Appl. Mech.
,
59
, pp.
245
256
.
22.
Ii
,
S.
,
Gong
,
X.
,
Sugiyama
,
K.
,
Wu
,
J.
,
Huang
,
H.
, and
Takagi
,
S.
,
2011
, “
A Full Eulerian Fluid-Membrane Coupling Method With a Smoothed Volume of Fluid Approach
,”
J. Comput. Phys.
,
69
, pp.
1
33
.10.4208/cicp.141210.110811s
23.
Takagi
,
S.
,
Sugiyama
,
K.
,
Ii
,
S.
, and
Matsumoto
,
Y.
,
2012
, “
A Review of Full Eulerian Methods for Fluid-Structure Interaction Problems
,”
ASME J. Appl. Mech.
,
79
, pp.
1
18
.10.1115/1.4005184
24.
Ii
,
S.
,
Sugiyama
,
K.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
,
2012
, “
A Computational Blood Flow Analysis in a Capillary Vessel Including Multiple Red Blood Cells and Platelets
,”
J. Biomech. Sci. Eng.
,
7
(
1
), pp.
72
83
.10.1299/jbse.7.72
25.
Mirzaii
,
I.
, and
Passandideh-Fard
,
M.
,
2012
, “
Modeling Free Surface Flows in Presence of an Arbitrary Moving Object
,”
Int. J. Multiphase Flow
,
39
, pp.
216
226
.10.1016/j.ijmultiphaseflow.2011.08.005
26.
Carlson
,
M.
,
Mucha
,
P.
,
Brooks
,
R.
, and
Turk
,
G.
,
2002
, “
Melting and Flowing
,”
ACM SIGGRAPH, 2002 Symposium on Computer Animation
, San Antonio, TX, July 21–22, pp.
167
174
.
27.
Youngs
,
D. L.
,
1984
, “
An Interface Tracking Method for a 3D Eulerian Hydrodynamics Code
,” AWRE, Technical Report No. 44/2092/35.
28.
Bonet
,
J.
, and
Wood
,
R.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
2nd ed.
,
Cambridge University
,
Cambridge, New York
.
29.
Chang
,
Y.
,
Bao
,
K.
,
Zhu
,
J.
, and
Wu
,
E.
,
2011
, “
High Viscosity Fluid Simulation Using Particle-Based Method
,”
IEEE International Symposium on Virtual Reality Innovation
, Singapore, March 19–20, pp.
199
205
.
30.
Kershaw
,
D. S.
,
1978
, “
The Incomplete Cholesky-Conjugate Gradient Method for the Iterative Solution of Systems of Linear Equations
,”
J. Comput. Phys.
,
26
(
1
), pp.
43
65
.10.1016/0021-9991(78)90098-0
31.
Sardarabadi
,
M.
,
Passandideh-Fard
,
M.
, and
Zeinali Heris
,
S.
,
2014
, “
Experimental Investigation of the Effects of Silica/Water Nanofluid on PV/T (Photovoltaic Thermal Units)
,”
J. Energy
,
66
, pp.
264
272
.10.1016/j.energy.2014.01.102
32.
Darkner
,
S.
, and
Erleben
,
K.
,
2011
, “
A Hyperelasticity Method for Interactive Virtual Design of Hearing Aids
,”
J. Visual Comput.
,
27
, pp.
645
653
.10.1007/s00371-011-0574-y
33.
Marckmann
,
G.
, and
Verron
,
E.
,
2006
, “
Comparison of Hyperelastic Models for Rubber-Like Materials
,”
Rubber Chem. Technol.
,
79
, pp.
835
858
.10.5254/1.3547969
34.
Wang
,
X.
, and
Zhang
,
L.
,
2010
, “
Interpolation Functions in the Immersed Boundary and Finite Element Methods
,”
J. Comput. Mech.
,
45
, pp.
321
334
.10.1007/s00466-009-0449-5
35.
Zhao
,
H.
,
Freund
,
J. B.
, and
Moser
,
R. D.
,
2008
, “
A Fixed-Mesh Method for Incompressible Flow-Structure Systems With Finite Solid Deformations
,”
J. Comput. Phys.
,
227
, pp.
3114
3140
.10.1016/j.jcp.2007.11.019
36.
Robinson
,
A.
,
Schroeder
,
C.
, and
Fedkiw
,
R.
,
2011
, “
A Symmetric Positive Definite Formulation for Monolithic Fluid-Structure Interaction
,”
J. Comput. Phys.
,
230
, pp.
1547
1566
.10.1016/j.jcp.2010.11.021
You do not currently have access to this content.