The interaction between a mildly underexpanded supersonic jet and a single cylinder was studied experimentally at laboratory scale by using the schlieren technique coupled with high-speed photography and pitot pressure measurements. This study was motivated by the need to optimize sootblowing operation in kraft recovery boilers. The effects of the transverse distance between the jet and cylinder centerlines (eccentricity), nozzle–cylinder distance, and cylinder size on jet–cylinder interaction were determined. Results show that upon impingement on a cylinder, a supersonic jet deflects at an angle and creates a weaker supersonic jet that we refer to as a “secondary” jet. The angle and strength of the deflected or secondary jet depend on the eccentricity between the primary jet and cylinder centerlines. When a jet impinges on a cylinder of diameter comparable to that of the jet or smaller, secondary jets form not only when the cylinder is placed close to the nozzle (in the stronger portion of the jet) but also when the cylinder is placed far away (in the jet's weaker portion; up to 20–24 nozzle exit diameters in the present study). Changing the eccentricity slightly results in a significant change in the secondary jet characteristics. For a cylinder much larger than the jet, secondary jets do not form at zero eccentricity (head-on impingement); the eccentricity at which they begin to form increases with the cylinder size. A study of the secondary jets shows that they spread out much more than the primary jet and are sheet- or fan-like with an oblong, oval cross section. The centerline pitot pressure of the secondary jets remains as high as the primary jet for a considerable distance from the tube only during weak interaction between the primary jet and the cylinder (i.e., during strongly eccentric/off-centerd impingement). As the interaction between the primary jet and the cylinder intensifies at lower eccentricities, the maximum centerline pitot pressure of the secondary jet decreases, and the pitot pressure decreases more quickly with distance from the tube.

References

References
1.
Tran
,
H. N.
,
1992
,
TAPPI 1992 Kraft Recovery Boiler Operation Short Course
,
TAPPI Press
,
Atlanta, GA
, p.
209
.
2.
Raask
,
E.
,
1985
,
Mineral Impurities in Coal Combustion
,
Hemisphere
,
New York
.
3.
Baxter
,
L. L.
,
Abbott
,
M. F.
, and
Douglas
,
R. E.
,
1992
, “
Dependence of Elemental Ash Deposit Composition on Coal Ash Chemistry and Combustor Environment
,”
Proceedings of the Engineering Foundation Conference on Inorganic Transformations and Ash Deposition During Combustion
, S. A. Benson, ed., Palm Coast, FL, Mar. 10–15, Engineering Foundation, New York, pp.
679
698
.
4.
Erickson
,
T. A.
,
Allan
,
S. E.
,
McCollor
,
D. P.
,
Hurley
,
J. P.
,
Srinivasachar
,
S.
,
Kang
,
S. G.
,
Baker
,
J. E.
,
Morgan
,
M. E.
,
Johnson
,
S. A.
, and
Borio
,
R.
,
1995
, “
Modeling of Fouling and Slagging in Coal-Fired Utility Boilers
,”
Fuel Process. Technol.
,
44
, pp.
155
171
.10.1016/0378-3820(95)00014-X
5.
Jenkins
,
B. M.
,
Baxter
,
L. L.
,
Miles
,
T. R.
, Jr.
, and
Miles
,
T. R.
,
1998
, “
Combustion Properties of Biomass
,”
Fuel Process. Technol.
,
54
, pp.
17
46
.10.1016/S0378-3820(97)00059-3
6.
Jameel
,
M. I.
,
Cormack
,
D. E.
,
Tran
,
H. N.
, and
Moskal
,
T. E.
,
1994
, “
Sootblower Optimization Part I: Fundamental Hydrodynamics of a Sootblower Nozzle and Jet
,”
TAPPI J.
,
77
(
5
), pp.
135
142
.
7.
Kaliazine
,
A.
,
Cormack
,
D. E.
,
Ebrahimi-Sabet
,
A.
, and
Tran
,
H. N.
,
1999
, “
The Mechanics of Deposit Removal in Kraft Recovery Boilers
,”
J. Pulp Pap. Sci.
,
25
(
12
), pp.
418
424
.
8.
Kaliazine
,
A.
,
Piroozmand
,
F.
,
Cormack
,
D. E.
, and
Tran
,
H. N.
,
1997
, “
Sootblower Optimization Part II: Deposit and Sootblower Interaction
,”
TAPPI J.
,
80
(
11
), pp.
201
207
.
9.
Eslamian
,
M.
,
Pophali
,
A.
,
Bussmann
,
M.
,
Cormack
,
D. E.
, and
Tran
,
H. N.
,
2008
, “
Failure of Cylindrical Brittle Deposits Impacted by a Supersonic Air Jet
,”
ASME J. Eng. Mater.
,
130
(
3
), p.
031002
.10.1115/1.2931147
10.
Eslamian
,
M.
,
Pophali
,
A.
,
Bussmann
,
M.
, and
Tran
,
H. N.
,
2009
, “
Breakup of Brittle Deposits by Supersonic Air Jet: The Effects of Varying Jet and Deposit Characteristics
,”
Int. J. Impact Eng.
,
36
(
2
), pp.
199
209
.10.1016/j.ijimpeng.2008.05.001
11.
Donaldson
,
C. D.
, and
Snedeker
,
R. S.
,
1971
, “
A Study of Free Jet Impingement, Part 1, Mean Properties of Free and Impinging Jets
,”
J. Fluid Mech.
,
45
(
2
), pp.
281
319
.10.1017/S0022112071000053
12.
Lamont
,
P. J.
, and
Hunt
,
B. L.
,
1980
, “
The Impingement of Underexpanded, Axisymmetric Jets on Perpendicular and Inclined Flat Plates
,”
J. Fluid Mech.
,
100
(
3
), pp.
471
511
.10.1017/S0022112080001255
13.
Kalghatgi
,
G. T.
, and
Hunt
,
B. L.
,
1976
, “
The Occurrence of Stagnation Bubbles in Supersonic Jet Impingement Flows
,”
Aeronaut. Q.
,
27
, pp.
169
185
.
14.
Krothapalli
,
A.
,
Rajkuperan
,
E.
,
Alvi
,
F.
, and
Lourenco
,
L.
,
1999
, “
Flow Field and Noise Characteristics of a Supersonic Impinging Jet
,”
J. Fluid Mech.
,
392
, pp.
155
181
.10.1017/S0022112099005406
15.
Nakai
,
Y.
,
Fujimatsu
,
N.
, and
Fujii
,
K.
,
2006
, “
Experimental Study of Underexpanded Supersonic Jet Impingement on an Inclined Flat Plate
,”
AIAA J.
,
44
(
11
), pp.
2691
2699
.10.2514/1.17514
16.
Tam
,
C. K. W.
, and
Ahuja
,
K. K.
,
1990
, “
Theoretical Model of Discrete Tone Generation by Impinging Jets
,”
J. Fluid Mech.
,
214
, pp.
67
87
.10.1017/S0022112090000052
17.
Gauntner
,
J. W.
,
Livingood
,
J. N. B.
, and
Hrycak
,
P.
,
1970
, “
Survey of Literature on Flow Characteristics of a Single Turbulent Jet Impinging on a Flat Plate
,” NASA, Washington, DC, Tech. Note D-5652.
18.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
19.
Tawfek
,
A. A.
,
1996
, “
Heat Transfer and Pressure Distributions of an Impinging Jet on a Flat Surface
,”
Heat Mass Transfer
,
32
, pp.
49
54
.10.1007/s002310050090
20.
Katti
,
V.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Study and Theoretical Analysis of Local Heat Transfer Distribution Between Smooth Flat Surface and Impinging Air Jet from a Circular Straight Pipe Nozzle
,”
Int. J. Heat Mass Transfer
,
51
, pp.
4480
4495
.10.1016/j.ijheatmasstransfer.2007.12.024
21.
Brahma
,
R. K.
,
Faruque
,
O.
, and
Arora
,
R. C.
,
1991
, “
Experimental Investigation of Mean Flow Characteristics of Slot Jet Impingement on a Cylinder
,”
Wärme Stoffübertragung
,
26
, pp.
257
263
.10.1007/BF01589996
22.
Schuh
,
H.
, and
Persson
,
B.
,
1964
, “
Heat Transfer on Circular Cylinders Exposed to Free-Jet Flow
,”
Int. J. Heat Mass Transfer
,
7
, pp.
1257
1271
.10.1016/0017-9310(64)90067-5
23.
Tawfek
,
A. A.
,
1999
, “
Heat Transfer Due to a Round Jet Impinging Normal to a Circular Cylinder
,”
Heat Mass Transfer
,
35
, pp.
327
333
.10.1007/s002310050332
24.
Umeda
,
Y.
,
Maeda
,
H.
, and
Ishii
,
R.
,
1987
, “
Discrete Tones Generated by the Impingement of a High-Speed Jet on a Circular Cylinder
,”
Phys. Fluids
,
30
(
8
), pp.
2380
2388
.10.1063/1.866128
25.
Derbeneva
,
L. I.
,
Kurshakov
,
M. Yu.
,
Tillyaeva
,
N. I.
, and
Shishkin
,
Yu. N.
,
1986
, “
Solution of the Problem of Interaction Between a Supersonic Jet and an Obstacle of Finite Dimensions
,”
Mekh. Zhidk. i Gaza
,
5
, pp.
179
184
.
26.
Tabrizi
,
S. P. A.
,
1996
, “
Jet Impingement Onto a Circular Cylinder
,” Ph.D. thesis, University of Liverpool, Liverpool, UK.
27.
Rahimi
,
M.
,
Owen
,
I.
, and
Mistry
,
J.
,
2003
, “
Heat Transfer Between an Under-Expanded Jet and a Cylindrical Surface
,”
Int. J. Heat Mass Transfer
,
46
, pp.
3135
3142
.10.1016/S0017-9310(03)00116-9
28.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.10.1038/nmeth.2089
29.
Pophali
,
A.
,
2011
, “
Interaction Between a Supersonic Jet and Kraft Recovery Boiler Tubes
,” Ph.D. thesis, University of Toronto, Toronto, ON, Canada.
30.
Papamoschou
,
D.
, and
Roshko
,
A.
,
1988
, “
The Compressible Turbulent Shear Layer: An Experimental Study
,”
J. Fluid Mech.
,
197
, pp.
453
477
.10.1017/S0022112088003325
31.
Tran
,
H. N.
,
Tandra
,
D. S.
, and
Jones
,
A.
,
2007
, “
Development of Low-Pressure Sootblowing Technology
,”
Proceedings of the International Chemical Recovery Conference
, PAPTAC & TAPPI, Quebec City, QC, Canada, May 29–June 1.
32.
Bryer
,
D. W.
, and
Pankhurst
,
R. C.
,
1971
,
Pressure-Probe Methods for Determining Wind Speed and Flow Direction
,
H. M. S. O.
,
London, UK
.
33.
Kweon
,
Y.-H.
,
Miyazato
,
Y.
,
Aoki
,
T.
,
Kim
,
H.-D.
, and
Setoguchi
,
T.
,
2006
, “
Experimental Investigation of Nozzle Exit Reflector Effect on Supersonic Jet
,”
Shock Waves
,
15
, pp.
229
239
.10.1007/s00193-006-0021-6
34.
Carling
,
J. C.
, and
Hunt
,
B. L.
,
1974
, “
The Near Wall Jet of a Normally Impinging, Uniform, Axisymmetric, Supersonic Jet
,”
J. Fluid Mech.
,
66
(
1
), pp.
159
176
.10.1017/S0022112074000127
35.
Seiner
,
J. M.
,
Manning
,
J. C.
, and
Ponton
,
M. K.
,
1987
, “
Model and Full Scale Study of Twin Supersonic Plume Resonance
,” AIAA Paper No. 87-0244.
36.
Tam
,
C. K. W.
,
1995
, “
Supersonic Jet Noise
,”
Annu. Rev. Fluid Mech.
,
27
, pp.
17
43
.10.1146/annurev.fl.27.010195.000313
37.
Singbeil
,
D.
,
1994
, “
Corrosion of Generating Bank Tubes in Kraft Recovery Boilers
,”
Pulp Pap. Can.
,
95
(
12
), pp.
132
135
.
38.
Abramovich
,
G. N.
,
1963
,
The Theory of Turbulent Jets
,
MIT Press
,
Cambridge, MA
, Chap. 1.
You do not currently have access to this content.