In this paper, the ventilated supercavities are studied both numerically and experimentally. A slender rod is considered as the solid body which has a sharp edged disk at the nose as a cavitator and special ports for air ventilation. The experiments are conducted in a recirculating water tunnel. The simulations are provided for two different algorithms in free-surface treatment, both using the VOF method but one using Youngs' algorithm in the advection of the free-surface and the other without. The comparison between numerical simulations and experiments show that the numerical method using Youngs' algorithm accurately simulates the physics of ventilated cavitation phenomena such as the cavity shape, the gas leakage and the re-entrant jet.

References

1.
Reichardt
,
H.
,
1946
, “
The Laws of Cavitation Bubbles at Axially Symmetrical Bodies in a Flow. Ministry of Aircraft Production (Great Britain)
,” Reports and Translations No. 766.
2.
Savchenko
,
Y. N.
,
Vlasenko
,
Y. D.
, and
Semenenko
,
V. N.
,
1999
, “
Experimental Study of High-Speed Cavitated Flows
,”
Int. J. Fluid Mech. Res.
,
26
(
3
), pp.
365
374
.
3.
Hrubes
,
J. D.
,
2001
, “
High-Speed Imaging of Supercavitation Underwater Projectiles
,”
Exp. Fluids
,
30
(
1
), pp.
57
64
.10.1007/s003480000135
4.
Kuklinski
,
R.
,
Henoch
,
C.
, and
Cstano
,
J.
,
2001
, “
Experimental Study of Ventilated Cavities on Dynamic Test Model
,”
4th International Symposium on Cavitation
, Pasadena, CA, Paper No. Cav01-B3-004.
5.
Savchenko
,
Y. N.
, and
Semenenko
,
V. N.
,
1998
, “
The Gas Absorption Into Supercavity From Liquid-Gas Bubble Mixture
,”
3rd International Symposium on Cavitation, Grenoble, France
, Vol.
2
, pp.
49
53
.
6.
Feng
,
X.-M.
,
Lu
,
C.-J.
, and
Hu
,
T.-Q.
,
2002
, “
Experimental Research on a Supercavitating Slender Body of Revolution With Ventilation
,”
J. Hydrodyn.
,
14
(
2
), pp.
17
23
.10.1016/S1001-6058%2807%2960154-1
7.
Feng
,
X.-M.
,
Lu
,
C.-J.
, and
Hu
,
T.-Q.
,
2005
, “
The Fluctuation Characteristics of Natural and Ventilated Cavities on an Axisymmetric Body
,”
J. Hydrodyn.
,
17
(
1
), pp.
87
91
.
8.
Zhang
,
X.-W.
,
Wei
Y.-J.
, and
Zhang
,
J.-Z.
,
2007
, “
Experimental Research on the Shape Characters of Natural and Ventilated Supercavitation
,”
J. Hydrodyn.
,
19
(
5
), pp.
564
571
.10.1016/S1001-6058(07)60154-1
9.
Lee
,
Q.-T.
,
Xue
L.-P.
, and
He
,
Y.-S.
,
2008
, “
Experimental Study of Ventilated Supercavities With a Dynamic Pitching Model
,”
J. Hydrodyn.
,
20
(
4
), pp.
456
460
.10.1016/S1001-6058(08)60080-3
10.
Wang
,
G.
,
Senocak
,
I.
,
Shyy
,
W.
,
Ikohagi
T.
, and
Cao
,
S.
,
2001
, “
Dynamics of Attached Turbulent Cavitating Flows
,”
Prog. Aerosp. Sci.
,
37
, pp.
551
581
.10.1016/S0376-0421(01)00014-8
11.
Yuan
,
W.
,
Sauer
,
J.
, and
Schnerr
,
G. H.
,
2001
, “
Modeling and Computation of Unsteady Cavitation Flows in Injection Nozzles
,”
J. Mech. Ind.
,
2
, pp.
383
394
.10.1016/s1296-2139(01)01120-4
12.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
13.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
,
2000
, “
A Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation
,”
Comput. Fluids
,
29
, pp.
849
875
.10.1016/S0045-7930(99)00039-0
14.
Frobenius
,
M.
,
Schilling
,
R.
,
Bachert
,
R.
, and
Stoffel
,
B.
,
2003
, “
Three-Dimensional Unsteady Cavitating Effects on a Single Hydrofoil and in a Radial Pump Measurement and Numerical Simulation
,”
Proceedings of the 5th International Symposium on Cavitation (CAV2003)
, Osaka, Japan, Paper No. GS-9-004.
15.
Wiesche
,
S.
,
2005
, “
Numerical Simulation of Cavitation Effects Behind Obstacles and in an Automotive Fuel Jet Pump
,”
Heat Mass Transfer
,
41
(
7
), pp.
615
624
.10.1007/s00231-004-0580-y
16.
Noh, W. F., and Woodward, P. R.,
1976
, “
SLIC (Simple Line Interface Calculation)
,”
Lecture Notes in Physics
,
59
, p.
330–340
.10.1007/3-540-08004-X_336
17.
Hirt
,
F. H.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Physics
,
39
, pp.
201–225
.10.1016/0021-9991(81)90145-5
18.
Youngs
,
D. L.
, 1984, “
An Interface Tracking Method for a 3D Eulerian Hydrodynamics Code
,” Atomic Weapons Research Establishment (AWRE) Technical Report No. 44/92/35.
19.
Passandideh_Fard
,
M.
, and
Roohi
,
E.
,
2008
, “
Transient Simulations of Cavitating Flows using a Modied Volume of Fluid VOF Technique
,”
Int. J. Comput. Fluid Dyn.
,
22
(
1–2
), pp.
97
114
.10.1080/10618560701733657
20.
Jia
,
L.-P
,
Wang
,
C.
Wei
,
Y.-J.
,
Wang
,
H.-B.
,
Zhang
,
J.-Z.
, and
Yu
,
K.-P.
,
2006
, “
Numerical Simulation of Artificial Ventilated Cavity
,”
J. Hydrodyn.
18
(
3
), pp.
273
279
.10.1016/S1001-6058(06)60003-6
21.
Ji
,
B.
, and
Luo
,
X.-W.
,
2010
, “
Numerical Investigation of the Ventilated Cavitating Flow Around an Under-Water Vehicle Based on a Three-Component Cavitation Model
,”
J. Hydrodyn.
,
22
(
6
), pp.
753
759
.10.1016/S1001-6058(09)60113-X
22.
Pan
,
Z.-C.
,
Lu
,
C.-J.
,
Chen
,
Y.
and
Hu
,
S.-L.
,
2010
, “
Numerical Study of Periodically Forced-Pitching of a Supercavitating Vehicle
,”
J. Hydrodyn.
,
22
(
5
), pp.
899
904
.10.1016/S1001-6058(10)60049-2
23.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid
,
Hemisphere
,
Washington, DC
.
24.
Leonard
,
B. P.
, and
Mokhtari
,
S.
,
1990
, “
ULTRA-SHARP Nonoscillatory Convection Schemes for High-Speed Steady Multidimensional Flow
,” NASA Lewis Research Center, Report No. NASA-TM-102568 (ICOMP-90-12),
You do not currently have access to this content.