In this paper, the ventilated supercavities are studied both numerically and experimentally. A slender rod is considered as the solid body which has a sharp edged disk at the nose as a cavitator and special ports for air ventilation. The experiments are conducted in a recirculating water tunnel. The simulations are provided for two different algorithms in free-surface treatment, both using the VOF method but one using Youngs' algorithm in the advection of the free-surface and the other without. The comparison between numerical simulations and experiments show that the numerical method using Youngs' algorithm accurately simulates the physics of ventilated cavitation phenomena such as the cavity shape, the gas leakage and the re-entrant jet.
Issue Section:
Multiphase Flows
References
1.
Reichardt
, H.
, 1946
, “The Laws of Cavitation Bubbles at Axially Symmetrical Bodies in a Flow. Ministry of Aircraft Production (Great Britain)
,” Reports and Translations No. 766.2.
Savchenko
, Y. N.
, Vlasenko
, Y. D.
, and Semenenko
, V. N.
, 1999
, “Experimental Study of High-Speed Cavitated Flows
,” Int. J. Fluid Mech. Res.
, 26
(3
), pp. 365
–374
.3.
Hrubes
, J. D.
, 2001
, “High-Speed Imaging of Supercavitation Underwater Projectiles
,” Exp. Fluids
, 30
(1
), pp. 57
–64
.10.1007/s0034800001354.
Kuklinski
, R.
, Henoch
, C.
, and Cstano
, J.
, 2001
, “Experimental Study of Ventilated Cavities on Dynamic Test Model
,” 4th International Symposium on Cavitation
, Pasadena, CA, Paper No. Cav01-B3-004.5.
Savchenko
, Y. N.
, and Semenenko
, V. N.
, 1998
, “The Gas Absorption Into Supercavity From Liquid-Gas Bubble Mixture
,” 3rd International Symposium on Cavitation, Grenoble, France
, Vol. 2
, pp. 49
–53
.6.
Feng
, X.-M.
, Lu
, C.-J.
, and Hu
, T.-Q.
, 2002
, “Experimental Research on a Supercavitating Slender Body of Revolution With Ventilation
,” J. Hydrodyn.
, 14
(2
), pp. 17
–23
.10.1016/S1001-6058%2807%2960154-17.
Feng
, X.-M.
, Lu
, C.-J.
, and Hu
, T.-Q.
, 2005
, “The Fluctuation Characteristics of Natural and Ventilated Cavities on an Axisymmetric Body
,” J. Hydrodyn.
, 17
(1
), pp. 87
–91
.8.
Zhang
, X.-W.
, Wei
Y.-J.
, and Zhang
, J.-Z.
, 2007
, “Experimental Research on the Shape Characters of Natural and Ventilated Supercavitation
,” J. Hydrodyn.
, 19
(5
), pp. 564
–571
.10.1016/S1001-6058(07)60154-19.
Lee
, Q.-T.
, Xue
L.-P.
, and He
, Y.-S.
, 2008
, “Experimental Study of Ventilated Supercavities With a Dynamic Pitching Model
,” J. Hydrodyn.
, 20
(4
), pp. 456
–460
.10.1016/S1001-6058(08)60080-310.
Wang
, G.
, Senocak
, I.
, Shyy
, W.
, Ikohagi
T.
, and Cao
, S.
, 2001
, “Dynamics of Attached Turbulent Cavitating Flows
,” Prog. Aerosp. Sci.
, 37
, pp. 551
–581
.10.1016/S0376-0421(01)00014-811.
Yuan
, W.
, Sauer
, J.
, and Schnerr
, G. H.
, 2001
, “Modeling and Computation of Unsteady Cavitation Flows in Injection Nozzles
,” J. Mech. Ind.
, 2
, pp. 383
–394
.10.1016/s1296-2139(01)01120-412.
Singhal
, A. K.
, Athavale
, M. M.
, Li
, H.
, and Jiang
, Y.
, 2002
, “Mathematical Basis and Validation of the Full Cavitation Model
,” ASME J. Fluids Eng.
, 124
(3
), pp. 617
–624
.10.1115/1.148622313.
Kunz
, R. F.
, Boger
, D. A.
, Stinebring
, D. R.
, Chyczewski
, T. S.
, Lindau
, J. W.
, Gibeling
, H. J.
, Venkateswaran
, S.
, and Govindan
, T. R.
, 2000
, “A Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation
,” Comput. Fluids
, 29
, pp. 849
–875
.10.1016/S0045-7930(99)00039-014.
Frobenius
, M.
, Schilling
, R.
, Bachert
, R.
, and Stoffel
, B.
, 2003
, “Three-Dimensional Unsteady Cavitating Effects on a Single Hydrofoil and in a Radial Pump Measurement and Numerical Simulation
,” Proceedings of the 5th International Symposium on Cavitation (CAV2003)
, Osaka, Japan, Paper No. GS-9-004.15.
Wiesche
, S.
, 2005
, “Numerical Simulation of Cavitation Effects Behind Obstacles and in an Automotive Fuel Jet Pump
,” Heat Mass Transfer
, 41
(7
), pp. 615
–624
.10.1007/s00231-004-0580-y16.
Noh, W. F., and Woodward, P. R.,
1976
, “SLIC (Simple Line Interface Calculation)
,” Lecture Notes in Physics
, 59
, p. 330–340
.10.1007/3-540-08004-X_33617.
Hirt
, F. H.
, and Nichols
, B. D.
, 1981
, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,” J. Comput. Physics
, 39
, pp. 201–225
.10.1016/0021-9991(81)90145-518.
Youngs
, D. L.
, 1984, “An Interface Tracking Method for a 3D Eulerian Hydrodynamics Code
,” Atomic Weapons Research Establishment (AWRE) Technical Report No. 44/92/35.19.
Passandideh_Fard
, M.
, and Roohi
, E.
, 2008
, “Transient Simulations of Cavitating Flows using a Modied Volume of Fluid VOF Technique
,” Int. J. Comput. Fluid Dyn.
, 22
(1–2
), pp. 97
–114
.10.1080/1061856070173365720.
Jia
, L.-P
, Wang
, C.
Wei
, Y.-J.
, Wang
, H.-B.
, Zhang
, J.-Z.
, and Yu
, K.-P.
, 2006
, “Numerical Simulation of Artificial Ventilated Cavity
,” J. Hydrodyn.
18
(3
), pp. 273
–279
.10.1016/S1001-6058(06)60003-621.
Ji
, B.
, and Luo
, X.-W.
, 2010
, “Numerical Investigation of the Ventilated Cavitating Flow Around an Under-Water Vehicle Based on a Three-Component Cavitation Model
,” J. Hydrodyn.
, 22
(6
), pp. 753
–759
.10.1016/S1001-6058(09)60113-X22.
Pan
, Z.-C.
, Lu
, C.-J.
, Chen
, Y.
and Hu
, S.-L.
, 2010
, “Numerical Study of Periodically Forced-Pitching of a Supercavitating Vehicle
,” J. Hydrodyn.
, 22
(5
), pp. 899
–904
.10.1016/S1001-6058(10)60049-223.
Patankar
, S. V.
, 1980
, Numerical Heat Transfer and Fluid
, Hemisphere
, Washington, DC
.24.
Leonard
, B. P.
, and Mokhtari
, S.
, 1990
, “ULTRA-SHARP Nonoscillatory Convection Schemes for High-Speed Steady Multidimensional Flow
,” NASA Lewis Research Center, Report No. NASA-TM-102568 (ICOMP-90-12),Copyright © 2014 by ASME
You do not currently have access to this content.