The present study predicts the flow field and the pressure distribution for a laminar flow in the gap between a stationary and a rotating disk. The fluid enters through the peripheral gap between two concentric disks and converges to the center where it discharges axially through a hole in one of the disks. Closed form expressions have been derived by simplifying the Navier– Stokes equations. The expressions predict the backflow near the rotating disk due to the effect of centrifugal force. A convection effect has been observed in the tangential velocity distribution at high throughflow Reynolds numbers.

References

References
1.
McGinn
,
J. H.
,
1956
, “
Observations on the Radial Flow of Water Between Fixed Parallel Plates
,”
Appl. Sci. Res.
,
5
, pp.
255
264
.
2.
Garcia
,
C. E.
,
1969
, “
Unsteady Airflow Between Two Disks at Low Velocity
,”
Proc. Inst. of Mech. Eng.
,
184
, pp.
913
923
.10.1243/PIME_PROC_1969_184_067_02
3.
Murphy
,
H. D.
,
Coxon
,
M.
, and
McEligot
,
D. M.
,
1978
, “
Symmetric Sink Flow Between Parallel Plates
,”
ASME J. Fluids Eng.
,
100
, pp.
477
484
.10.1115/1.3448711
4.
Murphy
,
H. D.
,
Chambers
,
F. W.
, and
McEligot
,
D. M.
,
1983
, “
Converging Flow, Part 1: Mean Flow
,”
J. Fluid Mech.
,
127
, pp.
379
401
.10.1017/S0022112083002785
5.
Lee
,
P. M.
, and
Lin
,
S.
,
1985
, “
Pressure Distribution for Radially Inflow Between Narrowly Spaced Disks
,”
ASME J. Fluids Eng.
,
107
, pp.
338
341
.10.1115/1.3242488
6.
Vatistas
,
G. H.
,
1988
, “
Radial Inflow Within Two Flat Disks
,”
AIAA J.
,
26
, pp.
887
890
.10.2514/3.9985
7.
Vatistas
,
G. H.
,
1990
, “
Radial Inflow Within Two Flat Disks
,”
AIAA J.
,
28
, pp.
1308
1311
.10.2514/3.25210
8.
Soo
,
S. L.
,
1958
, “
Laminar Flow Over an Enclosed Rotating Disk
,”
Trans. ASME
,
80
, pp.
287
296
.
9.
Bayley
,
F. J.
, and
Owen
,
J. M.
,
1969
, “
Flow Between a Rotating and a Stationary Disk
,”
Aeronaut. Quart.
,
20
, pp.
333
341
.
10.
Conover
,
R. A.
,
1968
, “
Laminar Flow Between a Rotating Disk and a Parallel Stationary Wall With or Without Radial Inflow
,”
ASME J. Basic Eng.
,
90
, pp.
325
331
.10.1115/1.3605099
11.
Rohtgi
,
V.
, and
Reshotko
,
E.
,
1974
, “
Analysis of Laminar Flow Between Stationary and Rotating Disks With Inflow
,” NASA Contract Report No. CR-2356.
12.
Senoo
,
Y.
, and
Hayami
,
H.
,
1976
, “
An Analysis on the Flow in a Casing Induced by Rotating Disk Using a Four-Layer Flow Model
,”
ASME J. Fluids Eng.
,
98
, pp.
192
198
.10.1115/1.3448256
13.
Adams
,
M. L.
, and
Szeri
,
A. Z.
,
1982
, “
Incompressible Flow Between Finite Disks
,”
ASME J. Appl. Mech.
,
49
, pp.
1
9
.10.1115/1.3161968
14.
Mochizuki
,
S.
, and
Yang
,
W.
,
1985
, “
Self-Sustained Radial Oscillating Flow Between Parallel Disks
,”
J. Fluid Mech.
,
154
, pp.
377
397
.10.1017/S0022112085001586
15.
Launder
,
B. E.
,
1964
, “
Laminarization of the Turbulent Boundary Layer in a Severe Acceleration
,”
ASME J. Appl. Mech.
,
31
, pp.
707
708
.10.1115/1.3629738
16.
Moretti
,
P. M.
, and
Kays
,
W. M.
,
1965
, “
Heat Transfer to a Turbulent Boundary Layer With Varying Free Stream Velocity and Varying Surface Temperature: An Experimental Study
,”
Int. J. Heat Mass Transfer
,
8
, pp.
1187
1202
.10.1016/0017-9310(65)90062-1
17.
Patel
,
V. C.
, and
Head
,
M. R.
,
1968
, “
Reversion for Turbulent to Laminar Flow
,”
J. Fluid Mech.
,
34
, pp.
371
392
.10.1017/S0022112068001953
18.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
Prediction of Relaminarization With a Two Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
, pp.
301
314
.10.1016/0017-9310(72)90076-2
19.
Singh
,
A.
,
Vyas
,
B. D.
, and
Powle
,
U. S.
,
1999
, “
Investigation on Inward Flow Between Two Stationary Parallel Disks
,”
Int. J. Heat Fluid Flow
,
20
, pp.
395
401
.10.1016/S0142-727X(98)10058-9
You do not currently have access to this content.