Liquid mercury has been investigated as a potential high-Z target for the production of muon particles for the Muon Collider project. This paper investigates the dynamics of mercury flow in a design of the target delivery system, with the objective of determining pipe configurations that yield weak turbulence intensities at the exit of the pipe. Eight curved pipe geometries with various half-bend angles and with/without nozzles in the exit region are studied. A theoretical analysis is carried out for steady laminar incompressible flow, whereby the terms representing the curvature effects are examined. Subsequent simulations of the turbulent flow regime in the pipes are based on a realizable k-ɛ Reynolds-Averaged Navier–Stokes (RANS) equations approach. The effects of half-bend angles and the presence of a nozzle on the momentum thickness and turbulence intensity at the exit plane of the curved pipe are discussed, as are the implications for the target delivery pipe designs.

References

References
1.
Efthymiopoulos
,
I.
,
2008
, “
MERIT—The High Intensity Liquid Mercury Target Experiment at the CERN PS
,”
Proceedings of the IEEE NSS'08
, p.
3302
.
2.
Kirk
,
H. G.
,
Tsang
,
T.
,
Efthymiopoulos
I.
,
Fabich
A.
,
Haug
F.
,
Lettry
J.
,
Palm
M.
,
Pereira
H.
,
Mokhov
N.
,
Striganov
S.
,
Carrol
A. J.
,
Graves
V. B.
,
Spampinato
P. T.
,
McDonald
K. T.
,
Bennett
J. R. J.
,
Caretta
O.
,
Loveridge
P.
, and
Park
H.
, 2007, “The MERIT High-Power Target Experiment at the CERN-PS,”
Proc. of the EPAC08
.
3.
Eustice
,
J.
,
1910
, “
Flow of Water in Curved Pipes
,”
Proc. R. Soc.London, Ser. A
,
84
(
568
), p.
107
.10.1098/rspa.1910.0061
4.
Eustice
,
J.
,
1911
, “
Experiments on Stream-Line Motion in Curved Pipes
,”
Proc.R. Soc. London, Ser.A
,
85
(
576
), p.
119
.10.1098/rspa.1911.0026
5.
Dean
,
W. R.
,
1927
, “
Note on the Motion of Fluid in Curved Pipes
,”
Philos. Mag.
,
20
, p.
208
.
6.
Dean
,
W. R.
,
1928
, “
The Streamline Motion of Fluid in a Sinuous Channel
,”
Philos. Mag.
,
30
, p.
673
.
7.
Adler
,
M.
, and
Angew
,
Z.
,
1934
, “
Perturbation by and Recovery From Bend Curvature of a Fully Developed Turbulent Pipe Flow
,”
J. Math. Mech.
,
14
, p.
257
.
8.
Roew
,
M
.,
1970
, “
Measurements and Computations of Flow in Pipe Bends
,”
J. Fluid Mech.
,
43
, p.
771
.10.1017/S0022112070002732
9.
Enayat
,
M. M.
,
Gibson
,
M. M.
,
Taylor
,
A. M. K. P.
, and
Yianneskis
,
M.
,
1982
, “
Laser-Doppler Measurements of Laminar and Turbulent Flow in Pipe Bend
,”
Int. J. Heat Fluid Flow
,
3
, p.
213
.10.1016/0142-727X(82)90024-8
10.
Azzola
,
J.
,
Humphrey
,
J. A. C.
,
Iacovides
,
H.
, and
Launder
,
B. E.
,
1986
, “
Developing Turbulent Flow in a U-Bend of Circular Cross Section: Measurement and Computation
,”
ASME J. Fluids Eng.
,
108
, p.
214
.10.1115/1.3242565
11.
Answer
,
M.
,
So
,
R. M. C.
, and
Lai
,
Y. G.
,
1986
, “
Perturbation by and Recovery From Bend Curvature of a Fully Developed Turbulent Pipe Flow
,”
Phys. Fluids A
,
1
, p.
1387
.10.1063/1.857315
12.
Sudo
,
K.
,
Sumida
,
M.
, and
Hibara
,
H.
,
1998
, “
Experimental Investigation on Turbulent Flow in a Circular-Sectioned 90-Degree Bend
,”
Exp. Fluids
,
25
, p.
51
.10.1007/s003480050206
13.
Sudo
,
K.
,
Sumida
,
M.
, and
Hibara
,
H.
,
2000
, “
Experimental Investigation on Turbulent Flow in a Circular-Sectioned 180-Degree Bend
,”
Exp. Fluids
,
28
, p.
42
.10.1007/s003480050007
14.
Hüttl
,
T. J.
, and
Friedrich
,
R.
,
2000
, “
Influence of Curvature and Torsion on Turbulent Flow in Helically Coiled Pipes
,”
Int. J. Heat Fluid Flow
,
21
, p.
345
.10.1016/S0142-727X(00)00019-9
15.
Rudolf
,
P.
, and
Desova
,
M.
,
2007
, “
Flow Characteristics of Curved Ducts
,”
Appl. Comput. Mech.
1
, p.
255
.
16.
Batchelor
,
G. K.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
17.
Murata
,
S.
,
Miyake
,
Y.
, and
Inaba
,
T.
,
1976
, “
Laminar Flow in a Curved Pipe With Varying Curvature
,”
J. Fluid Mech.
,
73
, p.
735
.10.1017/S0022112076001596
18.
Berger
,
S. A.
,
Talbot
,
L.
, and
Yao
,
L. S.
,
1983
, “
Flow in Curved Pipes
,”
Annu. Rev. Fluid Mech.
,
15
, p.
461
.10.1146/annurev.fl.15.010183.002333
19.
Webster
,
D. R.
, and
Humphrey
,
J. A. C.
,
1997
, “
Traveling Wave Instability in Helical Coil Flow
,”
Phys. Fluids
,
9
, p.
407
.10.1063/1.869139
20.
Ladeinde
,
F.
, and
Torrance
,
K. E.
,
1991
, “
Convection in a Rotating, Horizontal Cylinder With Radial and Normal Gravity Forces
,”
J. Fluid Mech.
,
228
, p.
361
.
21.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Modeling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
,
68
, p.
537
.10.1017/S0022112075001814
22.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One Equation Turbulence Model for Aerodynamic Flows
,” Paper No. AIAA92-0439, p.
439
.
23.
Harlow
,
F. H.
, and
Nakayama
,
P. I.
,
1968
, “
Transport of Turbulence Energy Decay Rate
,” Los Alamos Scientific Laboratory, Report No. LA3854.
24.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k−ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows–Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), p.
227
.10.1016/0045-7930(94)00032-T
25.
Michalke
,
A.
,
1965
, “
On Spatially Growing Disturbances in an Inviscid Shear Layer
,”
J. Fluid Mech.
,
23
, p.
521
.10.1017/S0022112065001520
26.
Plaschko
,
P.
,
1979
, “
Helical Instabilities of Slowly Divergent Jets
,”
J. Fluid Mech.
,
92
, p.
209
.10.1017/S0022112079000598
27.
Cohen
,
J.
, and
Wygnanski
,
I.
,
1987
, “
The Evolution of Instabilities on the Axisymmetric Jet. Part 1. The Linear Growth of Disturbances Near the Nozzle
,”
J. Fluid Mech.
,
176
, p.
191
.10.1017/S0022112087000624
28.
Corke
,
T. C.
,
Shakib
,
F.
, and
Nagib
,
H.
,
1991
, “
Mode Selection and Resonant Phase Locking in Unstable Axisymmetric Jets
,”
J. Fluid Mech.
,
223
, p.
253
.10.1017/S0022112091001428
29.
Corke
,
T. C.
, and
Kusek
,
S. M.
,
1993
, “
Resonance in Axisymmetric Jets With Controlled Helical-Mode Input
,”
J. Fluid Mech.
,
249
, p.
307
.10.1017/S0022112093001193
You do not currently have access to this content.