The slip flow of fluid in a microcone-plate viscometer has been considered. The first-order slip boundary condition is applied. A slip flow primary solution corresponding to unidirectional flow has been obtained. By ignoring all the convective terms and assuming a small gap angle, another closed-form solution called zeroth-order solution for slip flow is obtained. Previous investigations of the flow in the cone and plate did not consider the slip conditions at the solid-fluid interfacial boundary. Slip flow is also numerically studied in a microcone and plate viscometer. The accuracy of the two solutions is assessed by comparing their results with numerical solutions obtained by solving the full Navier–Stokes equation. The primary solution does not completely describe the flow in microcone and plate, and some deviations are found. On the other hand, the zeroth-order solution perfectly predicted the slip and no-slip flow in the inner region. A slip factor that takes into account spatial distribution yields a perfect match between the zeroth-order solution and numerical solution. On the other hand, analytical zeroth-order solution for outer region does not agree with the numerical work, and we should rely on the numerical solution. Taking a realistic range of slip length resulting from actual devices, numerical and theoretical results show that the differences in viscosity measurements between considering slip and no-slip are significant.

References

References
1.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids
, Vol.
1
,
2nd ed.
,
Wiley
,
New York
.
2.
Lin
,
Y.
,
Lin
,
C.
, and
Yang
,
L.
,
2006
, “
Micro-viscometer Based on Electrowetting on Dielectric
,”
Electrochim. Acta
,
52
(8), pp.
2876
2883
.10.1016/j.electacta.2006.10.025
3.
Moon
,
D.
, and
Kalman
,
B.
,
2009
, “
Measurements of Dynamic Capillary Pressure and Viscosity via the Multi-Sample
,”
Chem. Eng. Sci.
,
64
(22), pp.
4537
4542
.
4.
Petrak
,
D.
, and
Rauh
,
H.
,
2005
, “
Micro-Flow Metering and Viscosity Measurement of Low Viscosity Newtonian Fluids Using a Fibreoptical Spatial Filter Technique
,
Flow Measure. Instrum.
,
20
(2), pp.
49
56
.10.1016/j.flowmeasinst.2008.12.005
5.
Cheng
,
J. T.
, and
Giordano
,
N.
,
2002
, “
Fluid Flow Through Nanometer-Scale Channels
,”
Phys. Rev.
,
65
(3), pp.
031206
031211
.
6.
Heyden
,
F. H. J.
,
2003
, “
Low Hydraulic Capacitance Pressure Sensor for Integration With a Micro Viscosity Detector
,”
Sensors Actuators B Chem.
,
92
(1–2), pp.
102
109
.10.1016/S0925-4005(03)00099-6
7.
Venerus
,
D. V.
,
2007
, “
Free Surface Effects on Normal Stress Measurements in Cone and Plate Flow
,”
Appl. Rheol.
,
17
(
3
), pp.
36494
36500
.
8.
Vrentas
,
J. S.
,
Venerus
,
D. C.
, and
Vrentas
,
C. M.
,
1991
, “
An Exact Analysis of Reservoir Effects for Rotational Viscometers
,”
Chem. Eng. Sci.
,
46
(
1
), pp.
33
37
.10.1016/0009-2509(91)80113-D
9.
Olagunju
,
D. O.
,
1993
, “
Asymptotic Analysis of the Finite Cone and Plate Flow of a Non-Newtonian Fluid
,”
J. Non-Newton. Fluid Mech.
,
50
(
2–3
), pp.
289
303
.10.1016/0377-0257(93)80035-A
10.
Cheng
,
D. C.
,
1968
, “
The Effect of Secondary Flow on the Viscosity Measurement Using the Cone-and-Plate Viscometer
,”
Chem. Eng. Sci.
,
23
(
8
), pp.
895
899
.10.1016/0009-2509(68)80023-5
11.
Kumar
,
S.
, and
Larson
,
R. G.
,
2000
, “
Shear Banding and Secondary Flow in Viscoelastic Fluids Between a Cone and Plate
,”
J. Non-Newton. Fluid Mech.
,
95
, pp.
295
314
.10.1016/S0377-0257(00)00173-7
12.
Sdougo
,
H. P.
,
Bussolari
,
S. R.
, and
Dewey
,
C. F.
,
1984
, “
Secondary Flow and Turbulence in a Cone-and-Plate Device
,”
J. Fluid Mech.
,
138
, pp.
379
404
.10.1017/S0022112084000161
13.
Ellenberger
,
J.
, and
Fortuin
,
J. M. H.
,
1985
, “
A Criterion for Purely Tangential Laminar Flow in the Cone-and-Plate Rheometer and the Parallel-Plate Rheometer
,
Chem. Eng. Sci.
,
40
(
1
), pp.
111
116
.10.1016/0009-2509(85)85051-X
14.
Olagunju
,
D. O.
, and
Cook
,
L. P.
,
1993
, “
Secondary Flows in Cone and Plate Flow of an Oldroyd-B Fluid
,”
J. Non-Newton. Fluid Mech.
,
46
, pp.
29
47
.10.1016/0377-0257(93)80002-S
15.
Renardy
,
Y.
, and
Olagunju
,
D. O.
,
1998
, “
Inertial Effect on Stability of Cone-and-Plate Flow: Part 2: Non-Axisymmetric Modes
,”
J. Non-Newton. Fluid Mech.
,
78
(
1
), pp.
27
45
.10.1016/S0377-0257(97)00075-X
16.
Petera
,
J.
, and
Nassehi
,
V.
,
1995
, “
Use of the Finite Element Modeling Technique for the Improvement of Viscometry Results Obtained by Cone-and-Plate Rheometers
,”
J. Non-Newton. Fluid Mech.
,
58
(
1
), pp.
1
24
.10.1016/0377-0257(95)01354-X
17.
Bataineh
,
K.
, and
Al Rabaei
,
M.
,
2010
, “
Micro Scale Cone-Plate Viscometer With Slip Flow
,”
International Science and Technology Conference
, North Cyprus.
18.
Buschmann
,
M. H.
,
Dieterich
,
P.
,
Adams
,
N. A.
, and
Schnittler
,
H. J.
,
2005
, “
Analysis of Flow in a Cone-and-Plate Apparatus With Respect to Spatial and Temporal Effects on Endothelial Cells
,
Biotechnol. Bioeng.
,
89
(
5
), pp.
493
502
.10.1002/bit.20165
19.
Maxwell
,
J. C.
,
1879
, “
On Stresses in Rarified Gases Arising From Inequalities of Temperature
,”
Philos. Trans. R. Soc. London
,
170
, pp.
231
256
.10.1098/rstl.1879.0067
20.
Spikes
,
H.
, and
Granick
,
C.
,
2003
, “
Equation for Slip of Simple Liquids at Smooth Solid Surfaces
,”
Langmuir
,.
21.
Thompson
,
P. A.
, and
Troian
,
S. M.
,
1997
, “
A General Boundary Condition for Liquid Flow at Solid Surfaces
,”
Nature
,
389
, pp.
360
362
.10.1038/39475
22.
Cottin
,
C.
,
Barrat
,
J. L.
, and
Bocquet
,
L.
,
2003
, “
Low-Friction Flows of Liquid at Nanopatterned Interfaces
,”
Nat. Mater.
,
2
(4), pp.
237
240
.
23.
Arkilic
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
,
1997
, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
,
6
, pp.
167
178
.10.1109/84.585795
24.
Watanabe
,
K.
,
Udagawa
,
Y.
, and
Mizunuma
,
H.
,
1999
, “
Slip of Newtonian Fluids at Slip Boundary
,”
J. Fluid Mech.
,
381
, pp.
225
238
.10.1017/S0022112098003747
25.
Choi
,
C.
,
Westin
,
K. J. A.
, and
Breuer
,
K. S.
,
2003
, “
Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels
,”
Phys. Fluids
,
15
(
10
), p.
2897
.10.1063/1.1605425
26.
Morris
,
D.
,
Hannon
,
L.
, and
Garcia
,
A.
,
1992
, “
Slip Length in a Dilute Gas
,”
Phys. Rev. A
,
46
(
8
), p. 5279.10.1103/PhysRevA.46.5279
27.
Navier
,
C. L. M. H.
,
1823
, “
M'emoire sur les Lois du Mouvement des Fluids
,”
Mem. Acad. Sci. Inst. Fr.
,
6
, pp.
389
416
.
28.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
1994
,
Transport Phenomena
,
Wiley
,
New York
.
29.
Heuser
,
G.
, and
Krause
,
E.
,
1979
, “
The Flow Field of Newtonian Fluids in Cone and Plate Viscometers With Small Gap Angles
,”
Rheology Acta
,
18
(5), pp.
5279
5281
. 10.1007/BF01520351
30.
Fewell
,
M. E.
, and
Hellums
,
J. D.
,
1977
, “
The Secondary Flow of Newtonian Fluids in Cone-and-Plate Viscometers
,”
Trans. Soc. Rheology
,
21
(
4
), pp.
535
565
.10.1122/1.549452
31.
Adams
,
N.
, and
Lodge
,
A. S.
,
1964
, “
Rheological Properties of Concentrated Polymer Solutions II. A Cone-and-Plate and Parallel–Plate Pressure Distribution Apparatus for Determining Normal Stress Differences in Steady Shear Flow
,”
Philos. Trans. R. Soc. London
,
A256
, pp.
149
184
.10.1098/rsta.1964.0002
32.
Kay
,
A.
,
Lodge
,
A. S.
, and
Vale
,
D. G.
,
1968
, “
Determination of Normal Stress Differences in Steady Shear Flow II. Flow Birefringence, Viscosity, and Normal Stress Data for a Polyisobutene Liquid
,”
Rheology Acta
,
7
, p.
368
.10.1007/BF01984855
33.
Miller
,
M. J.
, and
Christiansen
,
E. B.
,
1972
, “
The Stress State of Elastic Fluids in Viscometric Flow
,”
AICHE J.
,
18
, pp.
600
608
.10.1002/aic.690180321
34.
Cheng
,
D. C.-H.
,
1968
,
Chem. Eng. Sci.
,
23
, pp.
895
899
.10.1016/0009-2509(68)80023-5
35.
Walters
,
K.
, and
Waters
,
N. D.
,
1967
, “
On the Use of Rheogoniometer. Part I: Steady Shear
,” Polymer Systems-Deformation and Flow, Wetton, London, pp.
211
235
.
You do not currently have access to this content.