An experimental and numerical analysis of cycling aerodynamics is presented. The cyclist is modeled experimentally by a mannequin at static crank angle; numerically, the cyclist is modeled using a computer aided design (CAD) reproduction of the geometry. Wind tunnel observation of the flow reveals a large variation of drag force and associated downstream flow structure with crank angle; at a crank angle of 15 deg, where the two thighs of the rider are aligned, a minimum in drag is observed. At a crank angle of 75 deg, where one leg is at full extension and the other is raised close to the torso, a maximum in drag is observed. Simulation of the flow using computational fluid dynamics (CFD) reproduces the observed variation of drag with crank angle, but underpredicts the experimental drag measurements by approximately 15%, probably at least partially due to simplification of the geometry of the cyclist and bicycle. Inspection of the wake flow for the two sets of results reveals a good match in the downstream flow structure. Numerical simulation also reveals the transient nature of the entire flow field in greater detail. In particular, it shows how the flow separates from the body of the cyclist, which can be related to changes in the overall drag.

References

References
1.
Grappe
,
G.
,
Candau
,
R.
,
Belli
,
A.
, and
Rouillon
,
J. D.
,
1997
, “
Aerodynamic Drag in Field Cycling With Special Reference to the Obree's Position
,”
Ergonomics
,
40
, pp.
1299
1311
.10.1080/001401397187388
2.
Kyle
,
C. R.
, and
Burke
,
E.
,
1984
, “
Improving the Racing Bicycle
,”
Mech. Eng.
,
106
(
9
), pp.
34
45
.
3.
Hanna
,
R. K.
,
2002
, “
Can CFD Make a Performance Difference in Sport?
,”
The Engineering of Sport 4
,
S.
Ujihashi
and
S. J.
Haake
, eds.,
Blackwell Science
,
New York
, pp.
17
30
.
4.
Defraeye
,
T.
,
Blocken
,
B.
,
Koninckx
,
E.
,
Hespel
,
P.
, and
Carmeliet
,
J.
,
2010
, “
Aerodynamic Study of Different Cyclist Positions: CFD Analysis and Full-Scale Wind-Tunnel Tests
,”
J. Biomech.
,
43
, pp.
1262
1268
.10.1016/j.jbiomech.2010.01.025
5.
Defraeye
,
T.
,
Blocken
,
B.
,
Koninckx
,
E.
,
Hespel
,
P.
, and
Carmeliet
,
J.
,
2010
, “
Computational Fluid Dynamics Analysis of Cyclist Aerodynamics: Performance of Different Turbulence-Modelling and Boundary-Layer Modeling Approaches
,”
J. Biomech.
,
43
, pp.
2281
2287
.10.1016/j.jbiomech.2010.04.038
6.
Defraeye
,
T.
,
Blocken
,
B.
,
Koninckx
,
E.
,
Hespel
,
P.
, and
Carmeliet
,
J.
,
2011
, “
Computational Fluid Dynamics Analysis of Drag and Convective Heat Transfer of Individual Body Segments for Different Cyclist Positions
,”
J. Biomech.
,
44
, pp.
1695
1701
.10.1016/j.jbiomech.2011.03.035
7.
Blocken
,
B.
,
Defraeye
,
T.
,
Koninckx
,
E.
,
Carmeliet
,
J.
, and
Hespel
,
P.
,
2013
, “
CFD Simulations of the Aerodynamic Drag of Two Drafting Cyclists
,”
Comput. Fluids
,
71
, pp.
435
445
.10.1016/j.compfluid.2012.11.012
8.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer 4
,
K.
Hanjalic
,
Y.
Nagano
, and
M. J.
Tummers
, eds.,
Begell House
,
Redding, CT
.
9.
Crouch
,
T. N.
,
Thompson
,
M.
,
Burton
,
D.
,
Sheridan
,
J.
, and
Brown
,
N. A. T.
,
2012
, “
Dominant Flow Structures in the Wake of a Cyclist
,”
Proceedings of the 30th AIAA Applied Aerodynamics Conference
, New Orleans, LA.
10.
Crouch
,
T. N.
,
Sheridan
,
J.
,
Burton
,
D.
,
Thompson
,
M.
, and
Brown
,
N. A. T.
,
2012
, “
A Quasi-Static Investigation of the Effect of Leg Position on Cyclist Aerodynamic Drag
,”
Proceedings of the 9th Conference of the International Sports Engineering Association
, Lowell, MA.
11.
Karabelas
,
S. J.
, and
Markatos
,
N. C.
,
2012
, “
Aerodynamics of Fixed and Rotating Spoked Cycling Wheels
,”
ASME J. Fluids Eng.
,
134
(1), p.
011102
.10.1115/1.4005691
12.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description
,”
Flow, Turbulence Combust.
,
85
, pp.
113
138
.10.1007/s10494-010-9264-5
13.
Breuer
,
M.
,
Jaffrezic
,
B.
, and
Arora
,
K.
,
2008
, “
Hybrid LES-RANS Technique Based on a One-Equation Near-Wall Model
,”
Theor. Comput. Fluid Dyn.
,
22
, pp.
157
187
.10.1007/s00162-007-0067-9
14.
Bhushan
,
S.
, and
Walters
,
D.
,
2012
, “
A Dynamic Hybrid Reynolds-Averaged Navier Stokes–Large Eddy Simulation Modeling Framework
,”
Phys. Fluids
,
24
, p.
015103
.10.1063/1.3676737
15.
Hunt
,
J.
,
1987
, “
Vorticity and Vortex Dynamics in Complex Turbulent Flows
,”
Trans. Can. Soc. Mech. Eng.
,
11
(1), pp.
21
35
.
16.
Sahner
,
J.
,
Weinkauf
,
T.
, and
Hege
,
H.-C.
,
2005
, “
Galilean Invariant Extraction and Iconic Representation of Vortex Core Lines
,”
Proceedings of the Eurographics/IEEE VGTC Symposium on Visualization
.
You do not currently have access to this content.