This paper reports on the study of confined jets and jets interaction in terms of increasing chemical transport. The context of this study is the atmospheric pressure plasma-enhanced chemical vapor deposition, higher thin film growth rate being desired, while maintaining total flow rate as low as possible. Turbulence mixing and enhanced heat transfer are the physical mechanisms identified as being capable of increasing the growth rate at atmospheric pressure. A numerical study of jets impinging on a heated substrate was carried out using quasicompressible Reynolds-Averaged Navier–Stokes (RANS) equations. Abe–Kondoh–Nagano (AKN) low-Reynolds k-ε and standard k-ε models were tested using an unconfined impinging jet at Reynolds number Re = 23,750 for jet diameter to plate-spacing ratios of H/d = 2 and H/d = 6. Results were compared with experimental data from the literature. Based on numerical results and in accordance with existing findings, the AKN low-Reynolds k-ε was shown to be reasonably accurate and was thus chosen for the numerical study. The effects of flow rate, hole diameter and length, jet-to-jet spacing, confinement width, and jet number were investigated numerically for inline jets confined between two vertical planes for jet Reynolds numbers between 810 and 5060. The configurations with the greatest turbulent intensity were studied, with the addition of diluted species transport and consumption. A laminar flow setup with a slot jet (Re = 79.5) was compared to two injection designs consisting of a simple set of 12 impinging gas jets (Rej = 2530; H/d = 3) with and without the adjunction of a wire to break the jets (Rej = 1687; H/d = 2). The two turbulent injection methods improved growth rate by 15%, which mainly resulted from a larger gas heating by the surface due to turbulent heat exchange in the jet impact zone.

References

References
1.
Wilhelm
,
I.
,
Teske
,
S.
, and
Massonet
,
G.
,
2011
, “
Solar Photovoltaic Electricity Empowering the World
,”
Solar Gen.
,
6
, pp.
17–28
.
2.
Kanazawa
,
S.
,
Kogoma
,
M.
,
Moriwaki
,
T.
, and
Okazaki
,
S.
,
1988
, “
Stable Glow Plasma at Atmospheric Pressure
,”
J. Phys. D: Appl. Phys.
,
21
(
5
), pp.
838–840
.10.1088/0022-3727/21/5/028
3.
Okazaki
,
S.
,
Kogoma
,
M.
,
Uehara
,
M.
, and
Kimura
,
Y.
,
1993
, “
Appearance of Stable Glow Discharge in Air, Argon, Oxygen and Nitrogen at Atmospheric Pressure Using a 50 Hz Source
,”
J. Phys. D: Appl. Phys.
,
26
(
5
), pp.
889–892
.10.1088/0022-3727/26/5/025
4.
Massines
,
F.
,
Rabehi
,
A.
,
Decomps
,
P.
,
Ben Gadri
,
R.
,
Ségur
,
P.
, and
Mayoux
,
C.
,
1997
, “
Experimental and Theoretical Study of a Glow Discharge at Atmospheric Pressure Controlled by Dielectric Barrier
,”
J. Appl. Phys.
,
83
(
6
), pp.
2950–2957
.10.1063/1.367051
5.
Belmonte
,
T.
,
Henrion
,
G.
, and
Gries
,
T.
,
2011
, “
Nonequilibrium Atmospheric Plasma Deposition
,”
J. Thermal Spray Technol.
,
20
(
4
), pp.
744
759
.10.1007/s11666-011-9642-0
6.
Massines
,
F.
,
Sarra-Bournet
,
C.
,
Fanelli
,
F.
,
Naudé
,
N.
, and
Gherardi
,
N.
,
2012
Atmospheric Pressure Low Temperature Direct Plasma Technology: Status and Challenges for Thin Film Deposition
,”
Plasma Process. Polym.
,
9
(
11–12
), pp.
1041
1073
.10.1002/ppap.201200029
7.
Massines
,
F.
,
Ségur
,
P.
,
Gherardi
,
N.
,
Khamphan
,
C.
, and
Ricard
,
A.
,
2003
, “
Physics and Chemistry in a Glow Dielectric Barrier Discharge at Atmospheric Pressure: Diagnostics and Modeling
,”
Surf. Coat. Technol.
,
174
(
175
), pp.
8
14
.10.1016/S0257-8972(03)00540-1
8.
Pappas
,
D.
,
2011
, “
Status and Potential of Atmospheric Plasma Processing of Materials
,”
J. Vacuum Sci. Technol. A: Vacuum, Surf., Films
,
29
(
2
), p.
20801
.10.1116/1.3559547
9.
Merche
,
D.
,
Vandencasteele
,
N.
, and
Reniers
,
F.
, “
Atmospheric Plasmas for Thin Film Deposition: A Critical Review
,”
Thin Solid Films
,
520
(
13
), pp.
4219
4236
.10.1016/j.tsf.2012.01.026
10.
Petersen
,
J.
,
Bechara
,
R.
,
Bardon
,
J.
,
Fouquet
,
T.
,
Ziarelli
,
F.
,
Daheron
,
L.
,
Ball
,
V.
,
Toniazzo
,
V
.
,
Michel
,
M.
,
Dinia
,
A.
, and
Ruch
,
D.
, “
Atmospheric Plasma Deposition Process: A Versatile Tool for the Design of Tunable Siloxanes-Based Plasma Polymer Films
,”
Plasmas Process. Polym.
,
8
(
10
), pp.
895
903
.10.1002/ppap.201100022
11.
Crow
,
S.
, and
Champagne
,
F. H.
,
1971
, “
Orderly Structure in Jet Turbulence
,”
J. Fluid Mech.
,
48
(
3
), pp.
547
591
.10.1017/S0022112071001745
12.
Mollendorf
,
J. C.
, and
Gebhart
,
B.
,
1973
, “
An Experimental and Numerical Study of the Viscous Stability of a Round Laminar Vertical Jet With and Without Buoyancy for Symmetric and Asymmetric Disturbance
,”
J. Fluid Mech.
,
61
, pp.
367
399
.10.1017/S0022112073000765
13.
Cohen
,
J.
, and
Wignansky
, I
.
,
1987
, “
The Evolution of Instabilities in the Axisymmetric Jet Part I. The Linear Growth of Disturbances Near the Nozzle
,”
J. Fluid Mech.
,
176
, pp.
191
219
.10.1017/S0022112087000624
14.
Schwertfirm
,
F.
,
Gradl
,
J.
,
Schwarzer
,
H. C.
,
Peukert
,
W.
, and
Manhart
,
M.
,
2007
, “
The Low Reynolds Number Turbulent Flow and Mixing in a Confined Impinging Jet Reactor
,”
Int. J. Heat Fluid Flow
,
28
, pp.
1429
1442
.10.1016/j.ijheatfluidflow.2007.04.019
15.
Souris
,
N.
,
Liakos
,
H.
,
Founti
,
M.
,
Palyvos
,
J.
, and
Markatos
,
N.
,
2002
, “
Study of Impinging Turbulent Jet Flows Using the Isotropic Low-Reynolds Number and the Algebraic Stress Methods
,”
Comput. Mech.
,
28
(
5
), pp.
381
389
.10.1007/s00466-002-0302-6
16.
Bolot
,
R.
,
Imbert
,
M.
,
Coddet
,
C.
,
2001
, “
On the Use of a Low-Reynolds Extension to the Chen-Kim k-ε Model to Predict Thermal Exchanges in the Case of an Impinging Plasma Jet
,”
Int. J. Heat Mass Transfer
,
44
, pp.
1095
1106
.
17.
Wang
,
H. X.
,
Chen
,
X.
,
Cheng
,
K.
, and
Pan
,
W.
,
2007
, “
Modeling Study on the Characteristics of Laminar and Turbulent Argon Plasma Jets Impinging Normally Upon a Flat Plate in Ambient Air
,”
Int. J. Heat Mass Transfer
,
50
, pp.
734
745
.10.1016/j.ijheatmasstransfer.2006.07.002
18.
Abe
,
K.
, and
Kondoh
,
T.
,
1994
, “
A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—I. Flow Field Calculations
,”
Int. J. Heat Mass Transfer
,
37
(
1
), pp.
139
151
.10.1016/0017-9310(94)90168-6
19.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3–2
, pp.
269
289
.10.1016/0045-7825(74)90029-2
20.
Lacasse
,
D.
,
Turgeon
,
È.
, and
Pelletier
,
D.
,
2004
, “
On the Judicious Use of the k-ε Model, Wall Functions and Adaptivity
,”
Int. J. Thermal Sci.
,
43
, pp.
925
938
.10.1016/j.ijthermalsci.2004.03.004
21.
Goldberg
,
U.
,
Palaniswamy
,
S.
,
Batten
,
P.
, and
Gupta
, V
.
,
2010
, “
Variable Turbulent Schmidt and Prandtl Number Modeling
,”
Eng. Appl. Comput. Fluid Mech.
,
4
(
4
), pp.
511
520
.
22.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
,
3rd ed.
,
McGraw-Hill
,
New York
.
23.
Kays
,
W. M.
,
1994
, “
Turbulent Prandtl Number—Where Are We?
,”
ASME J. Heat Transfer
,
116
(2), pp.
284–295
.10.1115/1.2911398
24.
Bird
,
R. B.
,
Stewai
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
,
2nd ed.
,
Wiley
,
New York
, pp.
525
528
.
25.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O'Connell
,
J. P.
,
2001
,
The Properties of Gases and Liquids
,
5th ed.
,
McGraw-Hill
,
New York
, pp.
779
780
.
26.
Cooper
,
D.
,
Jackson
,
D. C.
,
Launder
,
B. E.
, and
Liao
,
G. X.
,
1993
, “
Impinging Jet Studies for Turbulence Model Assessment—I Flow Field Experiments
,”
Int. J. Heat Mass Transfer
,
36
(
10
), pp.
2675
2684
.10.1016/S0017-9310(05)80204-2
27.
Baughn
,
J. W.
, and
Shimizu
,
S.
,
1989
, “
Heat Transfer Measurements From a Surface With Uniform Heat Flux and an Impinging Jet
,”
ASME J. Heat Transfer
,
111
(4), pp.
1096
1098
.10.1115/1.3250776
28.
Yan
,
X.
,
1993
, “
A Preheated-Wall Transient Method Using Liquid Crystals for the Measurement of Heat Transfer on External Surfaces and in Ducts
,” Ph.D. thesis, University of California, Davis, Davis, CA.
29.
Baughn
,
J. W.
,
Hechanova
,
A.
, and
Yan
,
X.
,
1991
, “
An Experimental Study of Entrainment Effects on the Heat Transfer From a Flat Surface to a Heated Circular Impinging Jet
,”
ASME J. Heat Transfer
,
113
(
4
), pp.
1023
1025
.10.1115/1.2911197
30.
Lytle
,
D.
, and
Webb
,
B.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle–Plate Spaces
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.10.1016/0017-9310(94)90059-0
31.
Colucci
,
D. W.
, and
Viskanta
,
R.
,
1996
, “
Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet
,”
Exp. Thermal Fluid Sci.
,
13
(
1
), pp.
71
80
.10.1016/0894-1777(96)00015-5
32.
Behnia
,
M.
,
Parneix
,
S.
,
Shabany
,
Y.
, and
Durbin
,
P. A.
,
1999
, “
Numerical Study of Turbulent Heat Transfer in Confined and Unconfined Impinging Jets
,”
Int. J. Heat Fluid Flow
,
20
, pp.
1
9
.10.1016/S0142-727X(98)10040-1
33.
Behnia
,
M.
,
Parneix
,
S.
, and
Durbin
,
P. A.
,
1998
, “
Prediction of Heat Transfer in an Axisymmetric Turbulent Jet Impinging on a Flat Plate
,”
Int. J. Heat Mass Transfer
,
41
(
12
), pp.
1845
1855
.10.1016/S0017-9310(97)00254-8
34.
Merci
,
B.
, and
Dick
,
E.
,
2003
, “
Heat Transfer Predictions With a Cubic k–ε Model for Axisymmetric Turbulent Jets Impinging Onto a Flat Plate
,”
Int. J. Heat Mass Transfer
,
46
, pp.
469
480
.10.1016/S0017-9310(02)00300-9
35.
Guerra
,
D.
,
Su
,
J.
, and
Silva Freire
,
A.
,
2005
, “
The Near Wall Behavior of an Impinging Jet
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2829
2840
.10.1016/j.ijheatmasstransfer.2005.01.027
36.
Wang
,
S. J.
, and
Mujumdar
A. S.
,
2005
, “
A Comparative Study of Five Low Reynolds Number k–ε Models for Impingement Heat Transfer
,”
Appl. Thermal Eng.
,
25
(
1
), pp.
31
44
.10.1016/j.applthermaleng.2004.06.001
37.
Xiong
,
J.
,
Koshizuka
,
S.
, and
Sakai
,
M.
,
2011
, “
Turbulence Modeling for Mass Transfer Enhancement by Separation and Reattachment With Two-Equation Eddy-Viscosity Models
,”
Nuclear Eng. Des.
,
241
(
8
), pp.
3190
3200
.10.1016/j.nucengdes.2011.06.028
38.
Ahn
,
J. W.
,
Park
,
T. S.
, and
Sung
,
H. J.
,
1997
, “
Application of a Near-Wall Turbulence Model to the Flows Over a Step With Inclined Wall
,”
Int. J. Heat Fluid Flow
,
18
, pp.
209
217
.10.1016/S0142-727X(96)00092-6
39.
Vallade
,
J.
,
Pouliquen
,
S.
,
Lecouvreur
,
P.
,
Bazinette
,
R.
,
Hernandez
,
E.
,
Quoizola
,
S.
, and
Massines
,
F.
,
2012
, “
a-SiNx:H Antireflective and Passivation Layer Deposited by Atmospheric Pressure Plasma
,”
Energy Procedia
,
27
, pp.
365
371
.10.1016/j.egypro.2012.07.078
40.
Massines
,
F.
,
Gherardi
,
N.
,
Naudé
,
N.
, and
Ségur
,
P.
,
2009
, “
Recent Advances in the Understanding of Homogeneous Dielectric Barrier Discharges
,”
Eur. Phys. J. Appl. Phys.
,
47–2
(
2
), pp.
22805–22815
.
41.
Pakhomov
,
M. A.
, and
Terekhov
,
V. I.
,
2011
, “
The Effect of Confinement on the Flow and Turbulent Heat Transfer in a Mist Impinging Jet
,”
Int. J. Heat Mass Transfer
,
54
(
19
), pp.
4266
4274
.10.1016/j.ijheatmasstransfer.2011.05.019
42.
Bernard
,
A.
,
Brizzi
,
L. E.
, and
Bousgarbiès
,
J. L.
,
1998
, “
Wall Flow Generated by a Group of Jets Impinging on a Plane Surface
,”
Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy
,
326
(
6
), pp.
373
378
.10.1016/S1251-8069(98)80415-6
43.
San
,
J. Y.
, and
Lai
,
M. D.
,
2001
, “
Optimum Jet-to-Jet Spacing of Heat Transfer for Staggered Arrays of Impinging Air Jets
,”
Int. J. Heat Mass Transfer
,
44
, pp.
3997
4007
.10.1016/S0017-9310(01)00043-6
44.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.10.1016/S0065-2717(06)39006-5
You do not currently have access to this content.