Computational fluid dynamics (CFD) simulations were performed using large-scale models of the human lung airway and unsteady periodic breathing conditions. The computational domain included fully coupled representations of the orotracheal region and large conducting zone up to generation four (G4) obtained from patient-specific CT data, and the small conducting zone (to the 16th generation) obtained from a stochastically generated airway tree with statistically realistic morphological characteristics. A reduced-geometry airway model was used, in which several airway branches in each generation were truncated, and only select flow paths were retained to the 16th generation. The inlet and outlet flow boundaries corresponded to the oral opening, the physical inlet/outlet boundaries at the terminal bronchioles, and the unresolved airway boundaries created from the truncation procedure. The total flow rate was specified according to the expected ventilation pattern for a healthy adult male, which was supplied by the whole-body modeling software HumMod. The unsteady mass flow distribution at the distal boundaries was prescribed based on a preliminary steady-state simulation with an applied flow rate equal to the average flow rate during the inhalation phase of the breathing cycle. In contrast to existing studies, this approach allows fully coupled simulation of the entire conducting zone, with no need to specify distal mass flow or pressure boundary conditions a priori, and without the use of impedance or one-dimensional (1D) flow models downstream of the truncated boundaries. The results show that: (1) physiologically realistic flow is obtained in the model, in terms of cyclic mass conservation and approximately uniform pressure distribution in the distal airways; (2) the predicted alveolar pressure is in good agreement with correlated experimental data; and (3) the use of reduced-order geometry modeling allows accurate and efficient simulation of large-scale breathing lung flow, provided care is taken to use a physiologically realistic geometry and to properly address the unsteady boundary conditions.

References

References
1.
Choi
,
J.
,
Tahwai
,
M. H.
,
Hoffman
,
E. A.
, and
Lin
,
C.-L.
,
2009
, “
On Intra- and Inter-Subject Variabilities of Airflow in the Human Lungs
,”
Phys. Fluids
,
21
, p.
101901
.10.1063/1.3247170
2.
Vial
,
L.
,
Perchet
,
D.
,
Fodil
,
R.
,
Caillibotte
,
G.
,
Fetita
,
C.
,
Preteux
,
F.
,
Beigelman-Aubry
,
C.
,
Grenier
,
P.
,
Thiriet
,
M.
,
Isabey
,
D.
, and
Sbirlea-Apiou
,
G.
,
2005
, “
Airflow Modeling of Steady Inspiration in Two Realistic Proximal Airway Trees Reconstructed From Human Thoracic Tomodensitometric Images
,”
Comput. Meth. Biomech. Biomed. Eng.
,
8
, pp.
267
277
.10.1080/10255840500289772
3.
Tawhai
,
M. H.
,
Pullan
,
A. J.
, and
Hunter
,
P. J.
,
2000
, “
Generation of an Anatomically Based Three-Dimensional Model of the Conducting Airways
,”
Ann. Biomed. Eng.
,
28
, pp.
793
802
.10.1114/1.1289457
4.
van Ertbruggen
,
C.
,
Hirsch
,
C.
, and
Paiva
,
M.
,
2005
Anatomically Based Three-Dimensional Model of Airways to Simulate Flow and Particle Transport Using Computational Fluid Dynamics
,”
J. Appl. Phys.
,
98
, pp.
970
980
.10.1152/japplphysiol.00795.2004
5.
Tena
,
A. F.
,
Casan
,
P.
,
Marcos
,
A.
,
Barrio
,
R.
, and
Blanco
,
E.
,
2011
, “
Analysis of the Fluid Dynamic Characteristics of the Obstructive Pulmonary Diseases Using a Three-Dimensional CFD Model of the Upper Conductive-Zone of the Lung Airways
,”
Proceedings of the ECCOMAS Thematic International Conference on Simulation and Modeling of Biological Flows
.
6.
Tian
,
L.
, and
Ahmadi
,
G.
,
2012
, “
Transport and Deposition of Micro- and Nano-Particles in Human Tracheobronchial Tree by an Asymmetric Multi-Level Bifurcation Model
,”
J. Comp. Multiphase Flows
,
4
, pp.
159
182
.10.1260/1757-482X.4.2.159
7.
Leary
,
D.
,
Bhatawadekar
,
S. A.
,
Parraga
,
G.
, and
Maksym
,
G. N.
,
2012
, “
Modeling Stochastic and Spatial Heterogeneity in a Human Airway Tree to Determine Variation in Respiratory System Resistance
,”
J. Appl. Physiol.
,
112
, pp.
167
175
.10.1152/japplphysiol.00633.2011
8.
Goo
,
J.
, and
Kim
,
C. S.
,
2003
, “
Theoretical Analysis of Particle Deposition in Human Lungs Considering Stochastic Variations of Airway Morphology
,”
J. Aerosol. Sci.
,
34
, pp.
585
602
.10.1016/S0021-8502(03)00024-7
9.
Asgharian
,
B.
, and
Price
,
O. T.
,
2007
, “
Deposition of Ultrafine (NANO) Particles in the Human Lung
,”
Inhal. Toxicol.
,
19
, pp.
1045
1054
.10.1080/08958370701626501
10.
Ma
,
B.
, and
Darquenne
,
C.
,
2011
, “
Aerosol Deposition Characteristics in Distal Acinar Airways Under Cyclic Breathing Conditions
,”
J. Appl. Physiol.
,
110
, pp.
1271
1282
.10.1152/japplphysiol.00735.2010
11.
Yin
,
Y.
,
Choi
,
J.
,
Hoffman
,
E. A.
,
Tawhai
,
M. H.
, and
Lin
,
C.-L.
,
2010
, “
Simulation of Pulmonary Air Flow With a Subject-Specific Boundary Condition
,”
J. Biomech.
,
43
, pp.
2159
2163
.10.1016/j.jbiomech.2010.03.048
12.
Walters
,
D. K.
, and
Luke
,
W. H.
,
2010
, “
A Method for Three-Dimensional Navier–Stokes Simulations of Large-Scale Regions of the Human Lung Airway
,”
ASME J. Fluids Eng.
,
132
(5), p.
051101
.10.1115/1.4001448
13.
Tawhai
,
M. H.
, and
Lin
,
C.-L.
,
2010
, “
Image-Based Modeling of Lung Structure and Function
,”
J. Magn. Reson. Imaging
,
32
, pp.
1421
1431
.10.1002/jmri.22382
14.
Nowak
,
N.
,
Kadake
,
P. P.
, and
Annapragada
,
A. V.
,
2003
, “
Computational Fluid Dynamics Simulation of Airflow and Aerosol Deposition in Human Lungs
,”
Ann. Biomed. Eng.
,
31
, pp.
374
390
.10.1114/1.1560632
15.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
C. S.
,
2008
, “
Airflow and Nanoparticle Deposition in a 16-Generation Tracheobronchial Airway Model
,”
Ann. Biomed. Eng.
,
36
, pp.
2095
2110
.10.1007/s10439-008-9583-z
16.
Walters
,
D. K.
, and
Luke
,
W. H.
,
2011
, “
Computational Fluid Dynamics Simulations of Particle Deposition in Large-Scale, Multi-Generational Lung Models
,”
ASME J. Biomech. Eng.
,
133
(1), p.
011003
.10.1115/1.4002936
17.
Walters
,
D. K.
,
Burgreen
,
G. W.
,
Lavallee
,
D. M.
,
Thompson
,
D. S.
, and
Hester
,
R. L.
,
2011
, “
Efficient, Physiologically Realistic Lung Airflow Simulations
,”
IEEE Trans. Biomed. Eng.
,
58
, pp.
3016
3019
.10.1109/TBME.2011.2161868
18.
Tian
,
G.
,
Longest
,
P. W.
,
Su
,
G.
,
Walenga
,
R. L.
, and
Hindle
,
M.
,
2011
, “
Development of a Stochastic Individual Path (SIP) Model for Predicting the Tracheobronchial Deposition of Pharmaceutical Aerosols: Effects of Transient Inhalation and Sampling the Airways
,”
J. Aerosol Sci.
,
42
, pp.
781
799
.10.1016/j.jaerosci.2011.07.005
19.
Longest
,
P. W.
,
Tian
,
G.
,
Walenga
,
R. L.
, and
Hindle
,
M.
,
2012
, “
Comparing MDI and DPI Aerosol Deposition Using in Vitro Experiments and a New Stochastic Individual Path (SIP) Model of the Conducting Airways
,”
Pharm. Res.
,
9
(6), pp.
1670
1688
.10.1007/s11095-012-0691-y
20.
Tian
,
G.
,
Longest
,
P. W.
,
Su
,
G.
, and
Hindle
,
M.
,
2011
, “
Characterization of Respiratory Drug Delivery With Enhanced Condensational Growth Using an Individual Path Model of the Entire Tracheobronchial Airways
,”
Ann. Biomed. Eng.
,
39
, pp.
1136
1153
.10.1007/s10439-010-0223-z
21.
Tena
,
A. M.
,
Casan
,
P.
,
Fernandez
,
J.
,
Ferrera
,
C.
, and
Marcos
,
A.
,
2013
, “
Characterization of Particle Deposition in a Lung Model Using an Individual Path
,”
EPJ Web Conf.
,
45
, pp.
1
5
.10.1051/epjconf/20134501079
22.
Weibel
,
E. R.
,
1963
,
Morphometry of the Human Lung
,
Academic
,
New York
.
23.
Gemci
,
T.
,
Ponyavin
,
V.
,
Chen
,
Y.
,
Chen
,
H.
, and
Collins
,
R.
,
2008
, “
Computational Model of Airflow in Upper 17 Generations of Human Respiratory Tract
,”
J. Biomech.
,
41
, pp.
2047
2054
.10.1016/j.jbiomech.2007.12.019
24.
De Backer
,
J. W.
,
Vos
,
W. G.
,
Vinchurkar
,
S. C.
,
Claes
,
R.
,
Drollman
,
A.
,
Wulfrank
,
D.
,
Parizel
,
P. M.
,
Germonpre
,
P.
, and
De Backer
,
W.
,
2010
, “
Validation of Computational Fluid Dynamics in CT-Based Airway Models With SPECT/CT
,”
Radiology
,
257
, pp.
854
862
.10.1148/radiol.10100322
25.
Ma
,
B.
, and
Lutchen
,
K. R.
,
2006
, “
An Anatomically Based Hybrid Computational Model of the Human Lung and Its Application to Low Frequency Oscillatory Mechanics
,”
Ann. Biomed. Eng.
,
34
, pp.
1691
1704
.10.1007/s10439-006-9184-7
26.
Malve
,
M.
,
Chandra
,
S.
,
Lopez-Villalobos
,
J. L.
,
Finol
,
E. A.
,
Ginel
,
A.
, and
Doblare
,
M.
,
2012
, “
CFD Analysis of the Human Airways Under Impedance-Based Boundary Conditions: Application to Healthy, Diseased and Stented Trachea
,”
Comp. Meth. Biomech. Biomed. Eng.
,
16
(2), pp.
198
216
.10.1080/10255842.2011.615743
27.
Walters
,
D. K.
,
Burgreen
,
G. W.
,
Hester
,
R. L.
,
Thompson
,
D. S.
,
Lavallee
,
D. M.
,
Pruett
,
W. A.
, and
Ford-Green
,
J.
,
2012
, “
Simulations of Cyclic Breathing in the Conducting Zone of the Human Lung
,”
ASME
Paper No. FEDSM2012-72474. 10.1115/FEDSM2012-72474
28.
Gaither
,
J. A.
,
Marcum
,
D. L.
, and
Mitchell
,
B.
,
2000
, “
SolidMesh: A Solid Modeling Approach to Unstructured Grid Generation
,”
Proceedings of the 7th International Conference on Numerical Grid Generation in Computational Field Simulations
, Whistler, Canada.
29.
Kitaoka
,
H.
,
Takaki
,
R.
, and
Suki
,
B.
,
1999
, “
A Three Dimensional Model for Human Airway Tree
,”
J Appl. Physiol.
,
76
, pp.
2207
2217
.
30.
Tawhai
,
M. H.
,
Hunter
,
P.
,
Tschirren
,
J.
,
Reinhardt
,
J.
,
McLennan
,
G.
, and
Hoffman
,
E. A.
,
2004
, “
CT-Based Geometry Analysis and Finite Element Models of the Human and Ovine Bronchial Tree
,”
J Appl. Physiol.
,
97
, pp.
2310
2321
.10.1152/japplphysiol.00520.2004
31.
Yeh
,
H.-C.
, and
Schum
,
G. M.
,
1980
, “
Models of Human Lung Airways and Their Application to Inhaled Particle Deposition
,”
Bull. Math. Biol.
,
42
, pp.
461
480
.10.1007/BF02460796
32.
Schmidt
,
A.
,
Zidowitz
,
S.
,
Kriete
,
A.
,
Denhard
,
T.
,
Krass
,
S.
, and
Peitgen
,
H.-O.
,
2004
, “
A Digital Reference Model of the Human Bronchial Tree
,”
Comput. Med. Imaging Graph.
,
28
, pp.
203
211
.10.1016/j.compmedimag.2004.01.001
33.
Longest
,
P. W.
, and
Vinchurkar
,
S.
,
2007
, “
Validating CFD Predictions of Respiratory Aerosol Deposition: Effects of Upstream Transition and Turbulence
,”
J. Biomech.
,
40
, pp.
305
316
.10.1016/j.jbiomech.2006.01.006
34.
Hester
,
R. L.
,
Brown
,
A. J.
,
Husband
,
L.
,
Iliescu
,
R.
,
Pruett
,
D.
,
Summers
,
R.
, and
Coleman
,
T. G.
,
2011
, “
HumMod: A Modeling Environment for the Simulation of Integrative Human Physiology
,”
Frontiers Physiol.
,
2
(
12
), pp.
1
12
.10.3389/fphys.2011.00012
35.
Guyton
,
A. C.
, and
Coleman
,
T. G.
,
1969
, “
Quantitative Analysis of the Pathophysiology of Hypertension
,”
Circul. Res.
,
24
, pp.
1
19
.10.1161/01.RES.24.1.1
36.
Soni
,
B.
,
Lindley
,
C.
, and
Thompson
,
D.
,
2009
, “
The Combined Effects of Non-Planarity and Asymmetry on Primary and Secondary Flows in the Small Bronchial Tubes
,”
Int. J. Num. Meth. Fluids
,
59
, pp.
117
146
.10.1002/fld.1802
37.
Bryan
,
A. C.
,
Milic-Emili
,
J.
, and
Pengelly
,
D.
,
1966
, “
Effect of Gravity on the Distribution of Pulmonary Ventilation
,”
J. Appl. Physiol.
,
21
, pp.
778
784
.
38.
Pedley
,
T. J.
,
Schroter
,
R. C.
, and
Sudlow
,
M. F.
,
1970
, “
The Prediction of Pressure Drop and Variation of Resistance Within the Human Bronchial Airways
,”
Resp. Physiol.
,
9
, pp.
387
405
.10.1016/0034-5687(70)90094-0
39.
DuBois
,
A. B.
,
Botelho
,
S. Y.
, and
Comroe
,
J. H.
,
1956
, “
A New Method for Measuring Airway Resistance in Man Using a Body Plethysmograph: Values in Normal Subjects and in Patients With Respiratory Disease
,”
J. Clin. Invest.
,
35
, pp.
327
335
.10.1172/JCI103282
40.
Xia
,
G.
,
Tawhai
,
M. H.
,
Hoffman
,
E. A.
, and
Lin
,
C.-L.
,
2010
, “
Airway Wall Stiffening Increases Peak Wall Shear Stress: A Fluid–Structure Interaction Study in Rigid and Compliant Airways
,”
Ann. Biomed. Eng.
,
38
, pp.
1836
1853
.10.1007/s10439-010-9956-y
41.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
, pp.
1598
1605
.10.2514/3.12149
42.
Spalart
,
P. R.
,
2000
, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
,
21
, pp.
252
263
.10.1016/S0142-727X(00)00007-2
43.
Bhushan
,
S.
, and
Walters
,
D. K.
,
2012
, “
A Dynamic Hybrid RANS/LES Modeling Framework
,”
Phys. Fluids
,
24
, p.
015103
.10.1063/1.3676737
44.
Walters
,
D. K.
,
Bhushan
,
S.
,
Alam
,
M. F.
, and
Thompson
,
D. S.
,
2013
, “
Investigation of a Dynamic Hybrid RANS/LES Modelling Methodology for Finite-Volume CFD Simulations
,”
Flow Turbul. Combust.
91
(
3
), pp.
643
667
.10.1007/s10494-013-9481-9
You do not currently have access to this content.