This paper presents an automatic multiobjective hydrodynamic optimization strategy for pump–turbine impellers. In the strategy, the blade shape is parameterized based on the blade loading distribution using an inverse design method. An efficient response surface model relating the design parameters and the objective functions is obtained. Then, a multiobjective evolutionary algorithm is applied to the response surface functions to find a Pareto front for the final trade-off selection. The optimization strategy was used to redesign a scaled pump–turbine. Model tests were conducted to validate the final design and confirm the validity of the design strategy.

References

References
1.
Hasmatuchi
,
V.
,
Farhat
,
M.
,
Roth
,
S.
,
Botero
,
F.
, and
Avellan
,
F.
,
2011
, “
Experimental Evidence of Rotating Stall in a Pump–Turbine at Off-Design Conditions in Generating Mode
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
0511041
.10.1115/1.4004088
2.
Kirschner
,
O.
,
Schmidt
,
H.
,
Ruprecht
,
A.
,
Mader
,
R.
, and
Meusburger
,
P.
,
2010
, “
Experimental Investigation of Vortex Control With an Axial Jet in the Draft Tube of a Model Pump–Turbine
,”
IOP Conference Series: Earth and Environmental Science
,
IOP
, Bristol, UK, Vol. 12, p.
012092
.10.1088/1755-1315/12/1/012092
3.
Hasmatuchi
,
V.
,
Roth
,
S.
,
Botero
,
F.
,
Avellan
,
F.
, and
Farhat
,
M.
,
2010
, “
High-Speed Flow Visualization in a Pump–Turbine Under Off-Design Operating Conditions
,”
IOP Conference Series: Earth and Environmental Science
,
IOP
, Bristol, UK, Vol. 12, p.
012059
. 10.1088/1755-1315/12/1/012059
4.
Roth
,
S.
,
Hasmatuchi
,
V.
,
Botero
,
F.
,
Farhat
,
M.
, and
Avellan
,
F.
,
2010
, “
Fluid–Structure Coupling in the Guide Vanes Cascade of a Pump–Turbine Scale Model
,”
IOP Conference Series: Earth and Environmental Science
,
IOP
, Bristol, UK, Vol. 12, p.
012074
.10.1088/1755-1315/12/1/012074
5.
Nicolet
,
C.
,
Ruchnonnet
,
N.
,
Alligné
,
S.
,
Koutnik
J.
, and
Avellan
,
F.
,
2010
, “
Hydroacoustic Simulation of Rotor–Stator Interaction in Resonance Conditions in Francis Pump–Turbine
,”
IOP Conference Series: Earth and Environmental Science
,
IOP
, Bristol, UK, Vol. 12, p.
012005
.10.1088/1755-1315/12/1/012005
6.
Escaler
,
X.
,
Hütter
,
J. K.
,
Egusquiza
,
E.
,
Farhat
,
M.
, and
Avellan
,
F.
,
2010
, “
Modal Behavior of a Reduced Scale Pump–Turbine Impeller. Part 1: Experiments
,”
IOP Conference Series: Earth and Environmental Science
,
IOP
, Bristol, UK, Vol. 12, p.
012116
.10.1088/1755-1315/12/1/012116
7.
Nowicki
,
P.
,
Sallaberger
,
P.
, and
Bachmann
,
P.
,
2009
, “
Modern Design of Pump–Turbines
,”
IEEE Electrical Power & Energy Conference
, IEEE Conference, Montreal, Canada, 5420368, pp.
1
7
.
8.
Goto
,
A.
,
Nohmi
,
M.
,
Sakurai
,
T.
, and
Sogawa
,
Y.
,
2002
, “
Hydrodynamic Design System for Pumps Based on 3D CAD, CFD, and Inverse Design Method
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
329
335
.10.1115/1.1471362
9.
Kerschberger
,
P.
, and
Gehrer
,
A.
,
2010
, “
Hydraulic Development of High Specific-Speed Pump–Turbines by Means of an Inverse Design Method, Numerical Flow-Simulation (CFD) and Model Testing
,”
IOP Conference Series: Earth and Environmental Science
,
IOP
, Bristol, UK, Vol. 12, p.
012039
. 10.1088/1755-1315/12/1/012039
10.
Bonaiuti
,
D.
, and
Zangeneh
,
M.
,
2009
, “
On the Coupling of Inverse Design and Optimization Techniques for the Multiobjective, Multipoint Design of Turbomachinery Blades
,”
ASME J. Turbomach.
,
131
(
2
), p.
0210141
.10.1115/1.2950065
11.
Daneshkah
,
K.
, and
Zangeneh
,
M.
,
2010
, “
Parametric Design of A Francis Turbine Runner by Means of a Three-Dimensional Inverse Design Method
,”
IOP Conference Series: Earth and Environmental Science
,
IOP
, Bristol, UK, Vol. 12, p.
012058
.10.1088/1755-1315/12/1/012058
12.
Bonaiuti
,
D.
,
Zangeneh
,
M.
,
Aartojarvi
,
R.
, and
Eriksson
,
J.
,
2010
, “
Parametric Design of a Waterjet Pump by Means of Inverse Design CFD Calculations and Experimental Analyses
,”
ASME J. Fluids Eng.
,
132
(
3
), p.
0311041
.10.1115/1.4001005
13.
Yiu
,
K. F. C.
, and
Zangeneh
,
M.
,
2000
, “
Three-Dimensional Automatic Optimization Method for Turbomachinery Blade Design
,”
J. Propul. Power
,
16
(
6
), pp.
1174
1181
.10.2514/2.5694
14.
Goto
,
A.
, and
Zangeneh
,
M.
,
2002
, “
Hydrodynamic Design of Pump Diffuser Using Inverse Design Method and CFD
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
319
328
.10.1115/1.1467599
15.
Zangeneh
,
M.
,
Schleer
,
M.
,
Pløger
,
F.
,
Hong
,
S. S.
,
Roduner
,
C.
,
Ribi
,
B.
, and
Abhari
,
R. S.
,
2004
, “
Investigation of an Inversely Designed Centrifugal Compressor Stage—Part 1 Design and Numerical Verification
,”
ASME J. Turbomach.
,
126
(
1
), pp.
73
81
.10.1115/1.1645868
16.
Borges
,
J. E.
,
1990
, “
A Three-Dimensional Inverse Method for Turbomachinery
,”
ASME J. Turbomach.
,
112
, pp.
346
354
.10.1115/1.2927666
17.
Obayashi
,
S.
,
Tsukahara
,
T.
, and
Nakamura
,
T.
,
2000
, “
Multiobjective Genetic Algorithm Applied to Aerodynamic Design of Cascade Airfoils
,”
IEEE Trans. Ind. Electron.
,
47
(
1
), pp.
211
216
.10.1109/41.824144
18.
Myers
,
R. H.
,
1999
, “
Response Surface Methodology—Current Status and Future Direction
,”
J. Quality Technol.
,
31
(
1
), pp.
30
44
.
19.
Zangeneh
,
M.
,
Goto
,
A.
, and
Harada
,
H.
,
1998
, “
On the Design Criteria for Suppression of Secondary Flows in Centrifugal and Mixed Flow Impellers
,”
ASME J. Turbomach.
,
120
(
4
), pp.
723
735
.10.1115/1.2841783
20.
Wang
,
L. Q.
,
Yin
,
J. L.
,
Jiao
,
L.
,
Wu
,
D. Z.
, and
Qin
,
D. Q.
,
2011
, “
Numerical Investigation on the “S” Characteristics of a Reduced Pump Turbine Model
,”
Sci. China Tech. Sci.
,
54
(
5
), pp.
1259
1266
.10.1007/s11431-011-4295-2
21.
Yin
,
J. L.
,
Liu
,
J. T.
,
Wang
,
L. Q.
,
Jiao
,
L.
,
Wu
,
D. Z.
, and
Qin
,
D. Q.
,
2010
, “
Performance Prediction and Flow Analysis in the Vaned Distributor of a Pump Turbine Under Low Flow Rate in Pump Mode
,”
Sci. China Tech. Sci.
,
53
(
12
), pp.
3302
3309
.10.1007/s11431-010-4175-1
22.
Windmer
,
C.
,
Staubli
,
T.
, and
Ledergerber
,
N.
,
2011
, “
Unstable Characteristics and Rotating Stall in Turbine Brake Operation of Pump–Turbines
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
041101
.10.1115/1.4003874
You do not currently have access to this content.