Numerical simulations using an Eulerian two-fluid model were performed for spatially developing, two-dimensional, axisymmetric jets issued from a 30-mm-diameter circular nozzle. The nozzle was simulated separately for various flow conditions to get fully developed velocity profiles at its exit. The effect of interparticle collisions in the nozzle gives rise to solids pressure and viscosity, which are modeled using kinetic theory of granular flows (KTGF). The particle sizes are in the range of 30 μm to 2 mm, and the particle loading is varied from 1 to 5. The fully developed velocity profiles are expressed by power law, U=Uc(1-(r/R))N. The exponent, N, is found to be 0.14 for gas phase, irrespective of particle sizes and particulate loadings. However, the solid-phase velocity varies significantly with the particle diameter. For particle sizes up to 200 μm, the exponent is 0.12. The center line velocity (Uc) of the solid phase decreases and, hence, the slip velocity increases as the particle size increases. For 1 mm and 2 mm size particles, the exponent is found to be 0.08 and 0.05, respectively. The developed velocity profiles of both the phases are used as the inlet velocities for the jet simulation. The modulations on the flow structures and turbulent characteristics of gas flow due to the solid particles with different particle sizes and loadings are investigated. The jet spreading and the decay of the centerline mean velocity are computed for all particle sizes and loadings considered under the present study. Additions of solid particles to the gas flow significantly modulate the gas turbulence in the nozzle as well as the jet flows. Fine particles suppress the turbulence, whereas coarse particles enhance it.

References

References
1.
Kartushinsky
,
A.
,
Michaelides
,
E. E.
,
Rudi
,
Y.
, and
Nathan
,
G.
,
2010
, “
RANS Modeling of a Particulate Turbulent Round Jet
,”
Chem. Eng. Sci.
,
65
, pp.
3384
3393
.10.1016/j.ces.2010.02.037
2.
Elghobashi
,
S.
,
1994
, “
On Predicting Particle-Laden Turbulent Flows
,”
Appl. Sci. Res.
,
52
(
4
), pp.
309
329
.10.1007/BF00936835
3.
Roul
,
M. K.
, and
Dash
,
S. K.
,
2012
, “
Single-Phase and Two-Phase Flow Through Thin and Thick Orifices in Horizontal Pipes
,”
ASME J. Fluids Eng.
,
134
, p.
091301
.10.1115/1.4007267
4.
Tanaka
,
T.
, and
Tsuji
,
Y.
,
1991
, “
Numerical Simulation of Gas–Solid Two-Phase Flow in a Vertical Pipe: On the Effect of Inter-Particle Collision
,”
ASME/FED Gas–Solid Flows
,
121
, pp.
123
128
.
5.
Kartushinsky
,
A.
, and
Michaelides
,
E. E.
,
2007
, “
Gas-Solid Particle Flow in Horizontal Channels: Decomposition of the Particle-Phase Flow and Inter-particle Collision Effects
,”
ASME J. Fluids Eng.
,
129
, pp.
702
712
.10.1115/1.2734202
6.
Bolio
,
E. J.
,
Yasuna
,
J. A.
, and
Sinclair
,
J. L.
,
1995
, “
Dilute Turbulent Gas–Solid Flow in Risers With Particle–Particle Interactions
,”
AIChE J.
,
141
(
6
), pp.
1375
1388
.10.1002/aic.690410604
7.
Cao
,
J.
, and
Ahmadi
,
G.
,
1995
, “
Gas-Particle Two-Phase Turbulent Flow in a Vertical Duct
,”
Int. J. Multiphase Flow
,
21
, pp.
1203
1228
.10.1016/0301-9322(95)00042-V
8.
Mathiesen
,
V. T.
,
Solberg
,
B. H.
, and
Jertager
,
H.
,
2000
, “
Predictions of Gas/Particle Flow With an Eulerian Model Including a Realistic Particle Size Distribution
,”
Powder Technol.
,
112
, pp.
34
45
.10.1016/S0032-5910(99)00303-4
9.
Milioli
C. C.
, and
Milioli
,
F. E.
,
2006
, “
Reaching the Statistical Steady State Regime in Two-Fluid Simulation of Risers
,”
Powder Technol.
,
167
(
1
), pp.
26
32
.10.1016/j.powtec.2006.06.002
10.
Tsuo
Y. P.
, and
Gidaspow
,
D.
,
1990
, “
Computation of Flow Patterns in Circulating Fluidized Beds
,”
AIChE J.
,
36
(
6
), pp.
885
896
.10.1002/aic.690360610
11.
Samareh
,
B.
, and
Dolatabadi
,
A.
,
2008
, “
Dense Particulate Flow in a Cold Gas Dynamic Spray System
,”
ASME J. Fluids Eng.
,
130
, p.
081702
.10.1115/1.2957914
12.
Abramovich
,
G. N.
,
1963
,
The Theory of Turbulent Jets
,
MIT
,
Boston
.
13.
Hedman
,
P. O.
, and
Smoot
,
L. D.
,
1975
, “
Particle-Gas Dispersion Effects in Confined Coaxial Jets
,”
AIChE J.
,
21
, pp.
372
379
.10.1002/aic.690210219
14.
Modarress
,
D.
,
Tan
,
H.
, and
Elghobashi
,
S.
,
1984
, “
Two Component LDA Measurements in a Two Phase Turbulent Jet
,”
AIAA J.
,
22
(
5
), pp.
624
630
.10.2514/3.8647
15.
Fleckhaus
,
D.
,
Hishida
,
K.
, and
Maeda
,
M.
,
1987
, “
Effect of Laden Solid Particles on the Turbulent Flow Structure of a Round Free Jet
,”
Exp. Fluids
,
5
, pp.
323
333
.10.1007/BF00277711
16.
Melville
,
W. K.
, and
Bray
,
K. N. C.
,
1979
. “
A Model of the Two-Phase Turbulent Jet
,”
Int. J. Heat Mass Transfer
,
22
, pp.
647
656
.10.1016/0017-9310(79)90113-3
17.
Crowe
,
C. T.
,
Gore
,
R. A.
, and
Troutt
,
T. R.
,
1985
, “
Particle Dispersion by Coherent Structures in Free Shear Flows
,”
Part. Sci. Technol.
,
3
, pp.
149
158
.10.1080/02726358508906434
18.
Crowe
,
C. T.
,
Chung
,
T. N.
, and
Troutt
,
T. R.
,
1988
, “
Particle Mixing in Free Shear Flows
,”
Prog. Energy Combust. Sci.
,
14
, pp.
171
194
.10.1016/0360-1285(88)90008-1
19.
Hardalupas
,
Y.
,
Taylor
,
A. M. P. K.
, and
Whitelow
,
J. H.
,
1989
, “
Velocity and Particle-Flux Characteristics of Turbulent Particle-Laden Jets
,”
Proc. R. Soc. London, Ser. A
,
426
, pp.
31
78
.10.1098/rspa.1989.0117
20.
Yuu
,
S.
,
Ikeda
,
K.
, and
Umekage
,
T.
,
1996
, “
Flow-Field Prediction and Experimental Verification of Low Reynolds Number Gas-Particle Turbulent Jets
,”
Colloids Surf.
, A,
109
, pp.
13
27
.10.1016/0927-7757(95)03470-6
21.
Frishman
,
F.
,
Hussainov
,
M.
,
Kartushinsky
,
A.
, and
Mulgi
,
A.
,
1997
, “
Numerical Simulation of A Two-Phase Turbulent Pipe-Jet Flow Loaded With Poly-Dispersed Solid Admixture
,”
Int. J. Multiphase Flow
,
23
(
4
), pp.
765
796
.10.1016/S0301-9322(97)00017-7
22.
Gidaspow
,
D.
,
1994
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
,
Academic
,
Boston, MA
.
23.
Lun
,
C. K. K.
,
Savage
,
S. B.
,
Jeffrey
,
D. J.
, and
Chepurniy
,
N.
,
1984
, “
Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flow Field
,”
J. Fluid Mech.
,
140
, pp.
223
256
.10.1017/S0022112084000586
24.
Ding
,
J.
, and
Gidaspow
,
D.
,
1990
, “
A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow
,”
AIChE J.
,
36
(
4
), pp.
523
538
.10.1002/aic.690360404
25.
Elgobashi
,
S. E.
, and
Abou-Arab
,
T. W.
,
1983
, “
A Two-Equation Turbulence Model for Two-Phase Flows
,”
Phys. Fluids
,
26
(
4
), pp.
931
938
.10.1063/1.864243
26.
Gidaspow
,
D.
,
Bezburuah
,
R.
, and
Ding
,
J.
,
1992
, “
Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach
,”
Proceedings of the 7th Engineering Foundation Conference on Fluidization
, pp.
75
82
.
27.
Hinze
,
J. O.
,
1975
,
Turbulence
,
McGraw-Hill
,
New York
.
28.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
.10.1016/0045-7825(74)90029-2
29.
Vasquez
,
S. A.
, and
Ivanov
,
V. A.
,
2000
, “
A Phase Coupled Method for Solving Multiphase Problems on Unstructured Meshes
,”
Proceedings of ASME FEDSM
, Boston.
30.
Johnson
,
P. C.
, and
Jackson
,
R.
,
1987
, “
Frictional-Collisional Constitutive Relations for Granular Materials, With Application to Plane Shearing
,”
J. Fluid Mech.
,
176
, pp.
67
93
.10.1017/S0022112087000570
31.
Tsuji
,
Y.
,
Morikawa
,
Y.
, and
Shiomi
,
H.
,
1984
, “
LDV Measurements of an Air-Solid Two Phase Flow in a Vertical Pipe
,”
J. Fluid Mech.
,
139
, pp.
417
434
.10.1017/S0022112084000422
32.
Jones
,
E.
,
Yurteri
,
C.
, and
Sinclair
,
J. L.
,
1999
, “
The Effect of Solids Loading on Particle Motion in Gas-Solid Flows
,”
Proceedings of Fluidization and Fluid-Particle Systems
, Annual AIChE Meeting, Dallas, TX, pp.
65
71
.
33.
Park
,
C. J.
, and
Chen
,
L. D.
,
1989
, “
Experimental Investigation of Confined Turbulent Jets: Part II. Particle-Laden Flow Data
,”
AIAA J.
,
27
, pp.
1511
1516
.10.2514/3.48839
34.
Gillandt
,
I.
,
Fritsching
,
U.
, and
Bauckhage
,
K.
,
2001
, “
Measurement of Phase Interaction in Dispersed Gas-Particle Two-Phase Flow
,”
Int. J. Multiphase Flow
,
27
, pp.
1313
1332
.10.1016/S0301-9322(01)00007-6
35.
Tsuji
,
Y.
,
Morikawa
,
Y.
,
Tanaka
,
T.
, and
Karimine
,
K.
,
1988
, “
Measurement of an Axi-Symmetric Jet Laden With Coarse Particles
,”
Int. J. Multiphase Flow
,
14
, pp.
565
574
.10.1016/0301-9322(88)90058-4
36.
Crowe
,
C. T.
,
2000
, “
On Models for Turbulence Modulation in Fluid–Particle Flows
,”
Int. J. Multiphase Flow
,
26
(
5
), pp.
719
727
.10.1016/S0301-9322(99)00050-6
37.
Hetsroni
,
G.
,
1989
, “
Particle–Turbulence Interaction
,”
Int. J. Multiphase Flow
,
15
(
5
), pp.
735
746
.10.1016/0301-9322(89)90037-2
38.
Michaelides
,
E. E.
,
2006
,
Particles, Bubbles and Drops-Their Motion, Heat and Mass Transfer
,
World Scientific
,
New Jersey
.
39.
Gore
,
R. A.
, and
Crowe
,
C. T.
,
1989
, “
Effect of Particle Size on Modulating Turbulent Intensity
”,
Int. J. Multiphase Flow
,
15
, pp.
279
285
.10.1016/0301-9322(89)90076-1
40.
Yuan
,
Z.
, and
Michaelides
,
E. E.
,
1992
, “
Turbulence Modulation in Particulate Flows–A Theoretical Approach
,”
Int. J. Multiphase Flow
,
18
, pp.
779
785
.10.1016/0301-9322(92)90045-I
You do not currently have access to this content.