In this paper some aspects of the unsteady friction in pipe flow expressed by the convolution are analyzed. This additional term introduced into the motion equation involves the accelerations of fluid occurring in the past and a weighting function. The essence of such approach is to assume the appropriate form of weighting function. However, until now, no fully reliable formula for this function has been found. To avoid some inconveniences typical for the commonly used weighting functions, an alternative form of the convolution is proposed. Instead of a weighting function an impulse response function in a general form is introduced. This function, defined in the real time domain, having clear physical interpretation and some useful properties is not related to the usually assumed viscosity distribution over the pipe's cross section. The proposed approach involves two parameters. The convergence of the impulse response function, characterized by the flow memory, is determined by a parameter which can be related to the pressure wave frequency. The second parameter determines the magnitude of the unsteady friction force. The proposed alternative convolution approach was tested basing on the laboratory measurements for a water hammer event initiated by turbulent flow in pipes made of steel. Although the alternative convolution approach causes a very good damping of the pressure wave amplitude, it appears to be unable to ensure appropriate smoothing of the pressure heads. This is because it acts in the dynamic equation as a source/sink term. To ensure the required smoothing of the pressure wave the diffusive term was included into the dynamic equation.

References

1.
Zielke
,
W.
,
1968
, “
Frequency Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
(
1
), pp.
109
115
.10.1115/1.3605049
2.
Trikha
,
A. K.
,
1975
, “
An Efficient Method For Simulating Frequency-Dependent Friction in Transient Liquid Flow
,”
ASME J. Fluid. Eng.
,
97
(
1
), pp.
97
105
.10.1115/1.3447224
3.
Suzuki
,
K.
,
Taketomi
,
T.
, and
Sato
S.
,
1991
, “
Improving Zielke's Method of Simulating Frequency-Dependent Friction in Laminar Liquid Pipe Flow
,”
ASME J. Fluid. Eng.
,
113
(
4
), pp.
569
573
.10.1115/1.2926516
4.
Schohl
,
G. A.
,
1993
, “
Improved Approximate Method For Simulating Frequency-Dependent Friction in Transient Laminar Flow
,”
ASME J. Fluid. Eng.
,
115
(
3
), pp.
420
424
.10.1115/1.2910155
5.
Zarzycki
,
Z.
,
1997
, “
Hydraulic Resistance of Unsteady Turbulent Liquid Flow in Pipes
,”
Proceedings of the 3rd International Conference on Water Pipeline Systems
, The Hague, BHR Group, pp.
163
178
.
6.
Zarzycki
,
Z.
,
2000
, “
On Weighting Function for Wall Stress During the Unsteady Turbulent Pipe Flow
,”
Proceedings of the 8th International Conference on Pressure Surges
, The Hague, BHR Group, pp.
529
543
.
7.
Vardy
,
A. E.
, and
Brown
,
M. B.
,
2003
, “
Transient Turbulent Friction in Smooth Pipe Flow
,”
J. Sound Vib.
,
259
(
5
), pp.
1011
1036
.10.1006/jsvi.2002.5160
8.
Vardy
,
A. E.
, and
Brown
,
M. B.
,
2004
, “
Transient Turbulent Friction in Fully Rough Pipe Flow
,”
J. Sound Vib.
,
270
, pp.
233
257
.10.1016/S0022-460X(03)00492-9
9.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Vítkovský
,
J.
,
2001
, “
Developments in Unsteady Pipe Flow Friction Modeling
,”
J. Hydr. Res.
,
39
(
3
), pp.
249
257
.10.1080/00221680109499828
10.
Brunone
,
B.
,
Ferrante
,
M.
, and
Cacciamani
,
M.
,
2004
, “
Decay of Pressure and Energy Dissipation in Laminar Transient Flow
,”
ASME J. Fluid. Eng.
,
126
(
6
), pp.
928
934
.10.1115/1.1839926
11.
Brunone
,
B.
,
Golia
,
U. M.
, and
Greco
,
M.
,
1995
, “
The Effects of Two-Dimensionality on Pipe Transients Modelling
,”
ASCE J. Hydr. Eng.
,
121
(
12
), pp.
906
912
.10.1061/(ASCE)0733-9429(1995)121:12(906)
12.
Brunone
,
B.
,
Karney
,
B. W.
,
Mecarelli
,
M.
, and
Ferrante
,
M.
,
2000
, “
Velocity Profiles and Unsteady Pipe Friction in Transient Flow
,”
J. Water Res. Planning Management
,
126
(
4
), pp.
236
244
.10.1061/(ASCE)0733-9496(2000)126:4(236)
13.
Ramos
,
H.
,
Covas
,
D.
,
Borga
,
A.
, and
Loureiro
,
D.
,
2004
, “
Surge Damping Analysis in Pipe Systems: Modelling and Experiments
,”
J. Hydr. Res.
,
42
(
4
), pp.
413
425
.10.1080/00221686.2004.9641209
14.
Szymkiewicz
,
R.
, and
Mitosek
,
M.
,
2007
, “
On Improvement of the Unsteady Pipe Flow Equations
,”
Int. J. Numer. Method Fluid
,
55
(
11
), pp.
1039
1058
.10.1002/fld.1507
15.
Covas
,
D.
,
Stoianov
,
I.
,
Mano
,
J. F.
,
Ramos
,
H.
,
Graham
,
N.
, and
Maksimovic
,
C.
,
2005
, “
The Dynamic Effect of the Pipe-Wall Viscoelasticity in Hydraulic Transients. Part II–Model Development, Calibration and Verification
,”
J. Hydr. Res.
,
43
(
1
), pp.
56
70
.10.1080/00221680509500111
16.
Weinerowska-Bords
,
K.
,
2007
, “
Accuracy and Parameter Estimation of Elastic and Viscoelastic Model of the Water Hammer
,”
TASK Q.
,
11
(
4
), pp.
383
395
.
17.
Soares
,
A. K.
,
Covas
,
D. I. C.
, and
Reis
,
L.F.R.
,
2008
, “
Analysis of PVC pipe - Wall Viscoelasticity During Water Hammer
,”
ASCE J. Hydr. Eng.
,
134
(
9
), pp.
1389
1394
.10.1061/(ASCE)0733-9429(2008)134:9(1389)
18.
Duan
,
H.-F.
,
Ghidaoui
,
M.
,
Lee
,
P. J.
, and
Tung
,
Y.-K.
,
2010
, “
Unsteady Friction and Visco-Elasticity in Pipe Fluid Transients
,”
J. Hydr. Res.
,
48
(
3
), pp.
354
362
.10.1080/00221681003726247
19.
Korn
,
G. A.
, and
Korn
,
T. M.
,
1968
,
Mathematical Handbook for Scientists and Engineers
, 2nd ed.,
McGraw-Hill
,
New York
.
20.
McQuarrie
,
D. A.
,
2003
,
Mathematical Methods for Scientists and Engineers
,
University Science Books
, Mill Valley, CA.
21.
Daily
,
W. L.
,
Hankey
,
W. L.
,
Olive
,
R. W.
, and
Jordaan
,
J. M.
,
1956
, “
Resistance Coefficients for Accelerated and Deaccelerated Flows Through Smooth Tubes and Orifices
,”
ASME J. Basic Eng., Ser. D
,
78
, pp.
1071
1077
.
22.
Brunone
,
B.
,
Golia
,
U. M.
, and
Greco
,
M.
,
1991
, “
Some Remarks on the Momentum Equation for Fast Transients
,”
Proceedings of the International Meeting on Hydraulic Transients With Column Separation
, IAHR, Valencia, Spain, pp.
140
148
.
23.
Chow
, V
. T.
,
Maidment
,
D. R.
, and
Mays
,
L. W.
,
1988
,
Applied Hydrology
,
McGraw-Hill
,
New York
.
24.
Szymkiewicz
,
R.
,
2010
,
Numerical Modeling in Open Channel Hydraulics
,
Springer
,
New York
.
25.
Mitosek
,
M.
, and
Szymkiewicz
,
R.
,
2012
, “
Wave Damping and Smoothing in the Unsteady Pipe Flow
,”
ASCE J. Hydr. Eng.
,
138
(
7
), pp.
619
628
.10.1061/(ASCE)HY.1943-7900.0000571
You do not currently have access to this content.