In order to study the flow behavior of multiple jets, numerical prediction of the three-dimensional domain of round jets from the nozzle edge up to the turbulent region is essential. The previous numerical studies on the round jet are limited to either two-dimensional investigation with Reynolds-averaged Navier–Stokes (RANS) models or three-dimensional prediction with higher turbulence models such as large eddy simulation (LES) or direct numerical simulation (DNS). The present study tries to evaluate different RANS turbulence models in the three-dimensional simulation of the whole domain of an isothermal, low Re (Re = 2125, 3461, and 4555), free, turbulent round jet. For this evaluation the simulation results from two two-equation (low Re k-ɛ and low Re shear stress transport (SST) k-ω), a transition three-equation (k-kl-ω), and a transition four-equation (SST) eddy-viscosity turbulence models are compared with hot-wire anemometry measurements. Due to the importance of providing correct inlet boundary conditions, the inlet velocity profile, the turbulent kinetic energy (k), and its specific dissipation rate (ω) at the nozzle exit have been employed from an earlier verified numerical simulation. Two-equation RANS models with low Reynolds correction can predict the whole domain (initial, transition, and fully developed regions) of the round jet with prescribed inlet boundary conditions. The transition models could only reach to a good agreement with the measured mean axial velocities and its rms in the initial region. It worth mentioning that the round jet anomaly is still present in the turbulent region of the round jet predicted by the low Re k-ɛ. By comparing the k and the ω predicted by different turbulence models, the blending functions in the cross-diffusion term is found one of the reasons behind the more consistent prediction by the low Re SST k-ω.

References

References
1.
Olsson
,
M.
, and
Fuchs
,
L.
,
1996
, “
Large Eddy Simulation of the Proximal Region of a Spatially Developing Circular Jet
,”
Phys. Fluid.
,
8
(
8
), pp.
2125
2137
.10.1063/1.868987
2.
Quinn
,
W. R.
, and
Militzer
,
J.
,
1989
, “
Effects of Nonparallel Exit Flow on Round Turbulent Free Jets
,”
Int. J. Heat Fluid Flow
,
10
(
2
), pp.
139
145
.10.1016/0142-727X(89)90008-8
3.
Sami
,
S.
,
Carmody
,
T.
, and
Rouse
,
H.
,
1967
, “
Jet Diffusion in the Region of Flow Establishment
,”
J. Fluid Mech.
,
27
(
2
), pp.
231
252
.10.1017/S0022112067000291
4.
Hill
,
B. J.
,
1972
, “
Measurement of Local Entrainment Rate in the Initial Region of Axisymmetric Turbulent air Jets
,”
J. Fluid Mech.
,
51
(
4
), pp.
773
779
.10.1017/S0022112072001351
5.
Boguslawski
,
L.
, and
Popiel
,
C. O.
,
1979
, “
Flow Structure of the Free Round Turbulent Jet in the Initial Region
,”
J. Fluid Mech.
,
90
(
3
), pp.
531
539
.10.1017/S0022112079002378
6.
Obot
,
N. T.
,
Graska
,
M. L.
, and
Trabold
,
T. A.
,
1984
, “
The Near Field Behavior of Round Jets at Moderate Reynolds Numbers
,”
Can. J. Chem. Eng.
,
62
(
5
), pp.
587
593
.10.1002/cjce.5450620503
7.
Davies
,
P. O. A. L.
,
Fisher
,
M. J.
, and
Barratt
,
M. J.
,
1963
, “
The Characteristics of the Turbulence in the Mixing Region of a Round Jet
,”
J. Fluid Mech.
,
15
(
3
), pp.
337
367
.10.1017/S0022112063000306
8.
Bradshaw
,
P.
,
Ferriss
,
D. H.
, and
Johnson
,
R. F.
,
1964
, “
Turbulence in the Noise-Producing Region of a Circular Jet
,”
J. Fluid Mech.
,
19
(
4
), pp.
591
624
.10.1017/S0022112064000945
9.
Ko
,
N. W. M.
, and
Davies
,
P. O. A. L.
,
1971
, “
The Near Field Within the Potential Cone of Subsonic Cold Jets
,”
J. Fluid Mech.
,
50
(
1
), pp.
49
78
.10.1017/S0022112071002453
10.
Lau
,
J. C.
, and
Fisher
,
M. J.
,
1975
, “
The Vortex-street Structure of ‘Turbulent’' Jets. Part 1
,”
J. Fluid Mech.
,
67
(
2
), pp.
299
337
.10.1017/S0022112075000328
11.
Crow
,
S. C.
, and
Champagne
,
F. H.
,
1971
, “
Orderly Structure in Jet Turbulence
,”
J. Fluid Mech.
,
48
(
3
), pp.
547
591
.10.1017/S0022112071001745
12.
Hussain
,
A. K. M. F.
,
1983
, “
Coherent Structures—Reality and Myth
,”
Phys. Fluid.
,
26
(
10
), pp.
2816
2850
.10.1063/1.864048
13.
Dimotakis
,
P. E.
,
Miake-Lye
,
R. C.
, and
Papantoniou
,
D. A.
,
1983
, “
Structure and Dynamics of Round Turbulent Jets
,”
Phys. Fluid.
,
26
(
11
), pp.
3185
3192
.10.1063/1.864090
14.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
15.
Wygnanski
,
I.
, and
Fiedler
,
H.
,
1969
, “
Some Measurements in the Self-Preserving Jet
,”
J. Fluid Mech.
,
38
(
3
), pp.
577
612
.10.1017/S0022112069000358
16.
Rodi
,
W.
,
1975
, “
A New Method of Analysing Hot-Wire Signals in Highly Turbulent Flow, and Its Evaluation in a Round Jet
,”
DISA Information
,
17
, pp.
9
18
.
17.
Panchapakesan
,
N. R.
, and
Lumley
,
J. L.
,
1993
, “
Turbulence Measurements in Axisymmetric Jets of Air and Helium. Part 1. Air Jet
,”
J. Fluid Mech.
,
246
(-
1
), pp.
197
223
.10.1017/S0022112093000096
18.
Hussein
,
J. H.
,
Capp
,
S. P.
, and
George
,
W. K.
,
1994
, “
Velocity Measurements in a High-Reynolds-Number, Momentum-Conserving, Axisymmetric, Turbulent Jet
,”
J. Fluid Mech.
,
258
, pp.
31
75
.10.1017/S002211209400323X
19.
Ewing
,
D.
,
Frohnapfel
,
B.
,
George
,
W. K.
,
Pedersen
,
J. M.
, and
Westerweel
,
J.
,
2007
, “
Two-Point Similarity in the Round Jet
,”
J. Fluid Mech.
,
577
, pp.
309
330
.10.1017/S0022112006004538
20.
Rajaratnam
,
N.
,
1976
,
Turbulent Jets
,
Elsevier Publishing Co.
,
Amsterdam and New York
.
21.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary-Layer Theory
,
Springer
,
Berlin
.
22.
Spalding
,
D. B.
,
1971
, “
Concentration Fluctuations in a Round Turbulent Free Jet
,”
Chem. Eng. Sci.
,
26
(
1
), pp.
95
107
.10.1016/0009-2509(71)86083-9
23.
Launder
,
B. E.
,
Morse
,
A. P.
,
Rodi
,
W.
, and
Spalding
,
D. B.
,
1972
, “
Prediction of Free shear Flows: A Comparison of the Performance of Six Turbulence Models,
” Proceedings of the NASA Langley Free Shear Flows Conference, Washington, DC, NASA SP 321, Vol.
1
, pp.
361
422
.
24.
Pope
,
S. B.
,
1978
, “
An Explanation of the Turbulent Round-Jet/Plane-Jet Anomaly
,”
AIAA J.
,
16
, pp.
279
281
.10.2514/3.7521
25.
Givi
,
P.
, and
Ramos
,
J. I.
,
1984
, “
On the Calculation of Heat and Momentum Transport in a Round Jet
,”
Int. Commun. Heat Mass Transf.
,
11
(
2
), pp.
173
182
.10.1016/0735-1933(84)90020-4
26.
Cho
,
J. R.
, and
Chung
,
M. K.
,
1992
, “
A k-ε-γ Equation Turbulence Model
,”
J. Fluid Mech.
,
237
, pp.
301
322
.10.1017/S0022112092003422
27.
Robinson
,
D. F.
,
Harris
,
J. E.
, and
Hassan
,
H. A.
,
1995
, “
Unified Turbulence Closure Model for Axisymmetric and Planar Free Shear Flows
,”
AIAA J.
,
33
(
12
), pp.
2325
2331
.10.2514/3.12987
28.
Ghirelli
,
F.
,
2007
, “
kεα: A Three-Equation Eddy-Viscosity Model of Turbulence
,”
Int. J. Num. Meth. Heat Fluid Flow
,
17
(
2
), pp.
140
164
.10.1108/09615530710723939
29.
Ball
,
C. G.
,
Fellouah
,
H.
, and
Pollard
,
A.
,
2012
, “
The Flow Field in Turbulent Round Free Jets
,”
Prog. Aerosp. Sci.
,
50
, pp.
1
26
.10.1016/j.paerosci.2011.10.002
30.
Tanaka
,
E.
,
1970
, “
The Interference of Two-Dimensional Parallel Jets: 1st Report, Experiments on Dual Jet
,”
Bull. JSME
,
13
(
56
), pp.
272
280
.10.1299/jsme1958.13.272
31.
Tanaka
,
E.
,
1974
, “
The Interference of Two-Dimensional Parallel Jets: 2nd Report, Experiments on the Combined Flow of Dual Jet
,”
Bull. JSME
,
17
(
109
), pp.
920
927
.10.1299/jsme1958.17.920
32.
Tanaka
,
E.
, and
Nakata
,
S.
,
1975
, “
The Interference of Two-Dimensional Parallel Jets: 3rd Report, The Flow Region Near the Nozzle in Triple Jets
,”
Trans. JSME
,
41
(
342
), pp.
537
545
.10.1299/kikai1938.41.537
33.
Janbakhsh
,
S.
,
Moshfegh
,
B.
, and
Ghahremanian
,
S.
,
2010
, “
A Newly Designed Supply Diffuser for Industrial Premises
,”
Int. J. Vent.
,
9
(
1
), pp.
59
67
.10.5555/ijov.2010.9.1.59
34.
Gouldin
,
F. C.
,
Schefer
,
R. W.
,
Johnson
,
S. C.
, and
Kollmann
,
W.
,
1986
, “
Nonreacting Turbulent Mixing Flows
,”
Prog. Energy Combust. Sci.
,
12
(
4
), pp.
257
303
.10.1016/0360-1285(86)90004-3
35.
Faghani
,
E.
,
Saemi
,
S.
,
Maddahian
,
R.
, and
Farhanieh
,
B.
,
2010
, “
On the Effect of Inflow Conditions in Simulation of a Turbulent Round Jet
,”
Arch. Appl. Mech.
,
81
(
10
), pp.
1439
1453
.10.1007/s00419-010-0494-8
36.
Papadopoulos
,
G.
, and
Pitts
,
W. M.
,
1999
, “
A Generic Centerline Velocity Decay Curve for Initially Turbulent Axisymmetric Jets
,”
ASME J. Fluid. Eng.
,
121
(
1
), pp.
80
85
.10.1115/1.2822016
37.
Zaman
,
K. B. M. Q.
, and
Hussain
,
A. K. M. F.
,
1984
, “
Natural Large-Scale Structures in the Axisymmetric Mixing Layer
,”
J. Fluid Mech.
,
138
, pp.
325
351
.10.1017/S0022112084000148
38.
George
,
W. K.
,
1989
,
The Self-Preservation of Turbulent Flows and Its Relation to Initial Conditions and Coherent Structures
,
Hemisphere
,
New York
.
39.
Boersma
,
B. J.
,
Brethouwer
,
G.
, and
Nieuwstadt
,
F. T. M.
,
1998
, “
A Numerical Investigation on the Effect of the Inflow Conditions on the Self-Similar Region of a Round Jet
,”
Phys. Fluid.
,
10
(
4
), pp.
899
909
.10.1063/1.869626
40.
George
,
W. K.
, and
Davidson
,
L.
,
2004
, “
Role of Initial Conditions in Establishing Flow Behavior
,”
AIAA J.
,
42
(
3
), pp.
438
446
.10.2514/1.3459
41.
George
,
W. K.
,
2012
, “
Asymptotic Effect of Initial and Upstream Conditions on Turbulence
,”
ASME J. Fluid. Eng.
,
134
(
6
), pp.
061203
061227
.10.1115/1.4006561
42.
Antonia
,
R. A.
, and
Zhao
,
Q.
,
2001
, “
Effect of Initial Conditions on a Circular Jet
,”
Experiment. Fluid.
,
31
(
3
), pp.
319
323
.10.1007/s003480100289
43.
Ghahremanian
,
S.
, and
Moshfegh
,
B.
, “
A Study on Proximal Region of Low Reynolds Confluent Jets Part I: Evaluation of Turbulence Models in Prediction of Inlet Boundary Conditions,
ASHRAE Trans.
, (in press).
44.
Morse
,
A. P.
,
1977
, “
Axisymmetric Turbulent Shear Flows With and Without Swirl
” Ph.D. thesis, London University, England.
45.
McGuirk
,
J. J.
, and
Rodi
,
W.
,
1977
, “
The Calculation of Three-Dimensional Free Jets
,”
Proc. Symposium on Turbulent Shear Flows
.
46.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
DCW Industries, Inc.
,
La Canada, CA
.
47.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
48.
Gohil
,
T. B.
,
Saha
,
A. K.
, and
Muralidhar
,
K.
,
2011
, “
Direct Numerical Simulation of Naturally Evolving Free Circular Jet
,”
ASME J. Fluid. Eng.
,
133
(
11
), p.
111203
.10.1115/1.4005199
49.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transf.
,
1
(
2
), pp.
131
137
.10.1016/0094-4548(74)90150-7
50.
Walters
,
D. K.
, and
Cokljat
,
D.
,
2008
, “
A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow
,”
ASME J. Fluid. Eng.
,
130
(
12
), pp.
121401
121414
.10.1115/1.2979230
51.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2004
, “
A New Model for Boundary Layer Transition Using a Single-Point RANS Approach
,”
ASME J. Turbomach.
,
126
(
1
), pp.
193
202
.10.1115/1.1622709
52.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Volker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.10.1115/1.2184352
53.
Mi
,
J.
,
Nathan
,
G. J.
, and
Nobes
,
D. S.
,
2001
, “
Mixing Characteristics of Axisymmetric Free Jets From a Contoured Nozzle, an Orifice Plate and a Pipe
,”
ASME J. Fluid. Eng.
,
123
(
4
), pp.
878
883
.10.1115/1.1412460
54.
Mi
,
J.
,
Nobes
,
D. S.
, and
Nathan
,
G. J.
,
2001
, “
Influence of Jet Exit Conditions on the Passive Scalar Field of an Axisymmetric Free Jet
,”
J. Fluid Mech.
,
432
, pp.
91
125
.10.1017/S0022112000003384
55.
Deo
,
R. C.
,
Mi
,
J.
, and
Nathan
,
G. J.
,
2007
, “
The Influence of Nozzle-Exit Geometric Profile on Statistical Properties of a Turbulent Plane Jet
,”
Experiment. Therm. Fluid Sci.
,
32
(
2
), pp.
545
559
.10.1016/j.expthermflusci.2007.06.004
56.
Mi
,
J.
,
Nathan
,
G. J.
, and
Luxton
,
R. E.
,
2000
, “
Centreline Mixing Characteristics of Jets From Nine Differently Shaped Nozzles
,”
Experiment. Fluid.
,
28
(
1
), pp.
93
94
.10.1007/s003480050012
57.
Gilliland
,
T.
,
Ranga-Dinesh
,
K. K. J.
,
Fairweather
,
M.
,
Falle
,
S. A. E. G.
,
Jenkins
,
K. W.
, and
Savill
,
A. M.
,
2012
, “
External Intermittency Simulation in Turbulent Round Jets
,”
Flow Turb. Combust.
,
89
(
3
), pp.
385
406
.10.1007/s10494-012-9403-2
58.
Ranga Dinesh
,
K. K. J.
,
Savill
,
A. M.
,
Jenkins
,
K. W.
, and
Kirkpatrick
,
M. P.
,
2010
, “
LES of Intermittency in a Turbulent Round Jet With Different Inlet Conditions
,”
Comput. Fluid.
,
39
(
9
), pp.
1685
1695
.10.1016/j.compfluid.2010.06.004
59.
Hinze
,
J. O.
,
1975
,
Turbulence
,
McGraw-Hill
,
New York
.
60.
Bruun
,
H. H.
,
1995
,
Hot-Wire Anemometry—Principles and Signal Analysis
,
Oxford University Press
,
Oxford, UK
.
61.
Ghahremanian
,
S.
, and
Moshfegh
,
B.
,
2011
, “
Numerical and Experimental Verification of Initial, Transitional and Turbulent Regions of Free Turbulent Round Jet
,”
20th AIAA Computational Fluid Dynamics Conference
, Honolulu, HI.
62.
Ramjee
,
V.
, and
Hussain
,
A. K. M. F.
,
1976
, “
Influence of the Axisymmetric Contraction Ratio on Free-Stream Turbulence
,”
ASME J. Fluid. Eng.
,
98
(
3
), pp.
506
515
.10.1115/1.3448386
63.
Malmström
,
T. G.
,
Kirkpatrick
,
A. T.
,
Christensen
,
B.
, and
Knappmiller
,
K. D.
,
1997
, “
Centreline Velocity Decay Measurements in Low-Velocity Axisymmetric Jets
,”
J. Fluid Mech.
,
346
, pp.
363
377
.10.1017/S0022112097006368
64.
Nottage
,
H. B.
,
1951
,
Report on Ventilation Jets in Room Air Distribution
,
Case Institute of Technology
,
Cleveland, OH
.
65.
Picano
,
F.
, and
Casciola
,
C. M.
,
2007
, “
Small-Scale Isotropy and Universality of Axisymmetric Jets
,”
Phys. Fluid.
,
19
(
11
), p.
118106
.10.1063/1.2804955
You do not currently have access to this content.