An accurate evaluation of fluid density and bulk modulus is essential for predicting the operation of hydraulic systems and components. Among the models reported in literature to describe fluid properties, of particular success in the fluid power field are the continuous methods that assume the gas and liquid phases to be the same fluid. However, these models are typically based on steady-state equilibrium relations and, consequently, they fail in correctly predicting the dynamic features of both air release and air absorption processes. These phenomena are particularly important for machines based on open-system hydraulic circuits, in which a significant part of the system can operate with a fluid below the saturation pressure. This paper addresses this topic by proposing a novel approach suitable to describe the dynamic features of both vaporization and air release processes. The approach is based on simplified transport equations to evaluate the phase change rate and the air release/dissolve rate. These transport equation are obtained from the well-known theoretical “full cavitation model” previously developed for computational fluid dynamics (CFD). Specific tests were performed to validate particularly as concerns the air release/absorption features using a standard ISO32 mineral oil. Comparisons between model predictions and measurement data are presented for compression/decompression cycles as concerns transient fluid density and bulk modulus, and a good agreement between the two trends is found, showing the potentials of the new approach to describe typical cavitation phenomena in hydraulic systems.

References

References
1.
Bair
,
M.
, and
Michael
,
P.
,
2008
, “
Modeling the Pressure and Temperature Dependence of Viscosity and Volume for Hydraulic Fluids
,” ASME Paper No. IJTC2008-71028.
2.
Blackburn
,
J. F.
,
Reethof
,
G.
, and
Shearer
,
J. L.
,
1960
,
Fluid Power Control
,
MIT
,
Cambridge, MA
.
3.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
Wiley
,
New York
.
4.
Gholizadeh
,
H.
,
Burton
,
R.
, and
Schoenau
,
G.
,
2011
, “
Fluid Bulk Modulus: A Literature Survey
,”
Int. J. Fluid Power
,
12
(
3
), pp.
5
16
. Available at http://journal.fluid-power.net/journal/issue35/paper1.html
5.
Baasiri
,
M.
, and
Tullis
,
J. P.
,
1983
, “
Air Release During Column Separation
,”
ASME J. Fluids Eng.
,
105
(
1
), pp.
113
118
.10.1115/1.3240926
6.
Gholizadeh
,
H.
,
Burton
,
R.
, and
Schoenau
,
G.
,
2012
, “
Fluid Bulk Modulus: Comparison of Low Pressure Models
,”
Int. J. Fluid Power
,
13
(
1
), pp.
7
16
. Available at http://journal.fluid-power.net/journal/issue36/paper1.html
7.
Kim
,
S.
, and
Murrenhoff
,
H.
,
2012
, “
Measurement of Effective Bulk Modulus for Hydraulic Oil at Low Pressure
,”
ASME J. Fluids Eng.
,
134
(
2
), p.
021201
.10.1115/1.4005672
8.
Bakir
,
F.
, and
Rey
,
R.
,
2004
, “
Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.10.1155/S1023621X04000028
9.
Seo
,
J. H.
,
2008
, “
Prediction of Cavitating Flow Noise by Direct Numerical Simulation
,”
J. Comput. Phys.
,
227
(
13
), pp.
6511
6531
.10.1016/j.jcp.2008.03.016
10.
Wiggert
,
D. C.
, and
Sundquist
,
M. J.
,
1979
, “
The Effect of Gaseous Cavitation on Fluid Transients
,”
ASME J. Fluids Eng.
,
101
, pp.
79
86
.10.1115/1.3448739
11.
Schweitzer
,
P. H.
, and
Szebehely
,
V. G.
,
1950
, “
Gas Evolution in Liquids and Cavitation
,”
J. Appl. Phys.
,
21
(
12
), pp.
1218
1224
.10.1063/1.1699579
12.
Yadigaroglu
,
G.
, and
Lahey
,
R. T.
,
1976
, “
On the Various Forms of the Conservation Equations in Two-Phase Flow
,”
Int. J. Multiphase Flow
,
2
(
5–6
), pp.
477
494
.10.1016/0301-9322(76)90011-2
13.
Shimada
,
M.
,
Nozaki
,
S.
,
Kobayashi
,
T.
, and
Matsumoto
,
Y.
,
1998
, “
Numerical Study of the Cloud Cavitation in a Fuel Injection Pump
,” SAE Paper No. 981023.
14.
Kato
,
M.
,
Kano
,
H.
,
Date
,
K.
,
Oya
,
T.
, and
Niizuma
,
K.
,
1997
, “
Flow Analysis in Nozzle Hole in Consideration of Cavitation
,” SAE Paper No. 970052.
15.
Casoli
,
P.
,
Vacca
,
A.
,
Franzoni
,
G.
, and
Berta
,
G. L.
,
2006
, “
Modeling of Fluid Properties in Hydraulic Positive Displacement Machines
,”
Simul. Model. Pract. Theory
,
14
(
8
), pp.
1059
1072
.10.1016/j.simpat.2006.09.006
16.
IMAGINE
S. A.
,
2007
, “
HYD Advanced Fluid Properties
,” Technical Bulletin No. 117, Rev. 7.
17.
Wylie
,
E. M.
, and
Streeter
,
V. L.
,
1978
,
Fluid Transients
,
Michigan University
,
Ann Arbor, MI
, Chap. 1.
18.
Nykanen
,
T. H. A.
,
Esque
,
S.
, and
Ellman
,
A. U.
,
2000
, “
Comparison of Different Fluid Models
,” Bath Workshop on Power Transmission and Motion Control (PTMC 2000), Bath, UK, pp.
101
110
.
19.
Ruan
,
J.
, and
Burton
,
R.
,
2006
, “
Bulk Modulus of Air Content Oil in a Hydraulic Cylinder
,”
Proceedings of the 2006 ASME International Mechanical Engineering Congress and Exposition (IMECE 2006)
,
Chicago, IL
, pp.
259
269
.
20.
Vacca
,
A.
,
Klop
,
R.
, and
Ivantysynova
,
M.
,
2010
, “
A Numerical Approach for the Evaluation of the Effects of Air Release and Vapor Cavitation on Effective Flow Rate of Axial Piston Machines
,”
Int. J. Fluid Power
,
11
(
1
), pp.
33
46
. Available at http://journal.fluid-power.net/journal/issue30/paper3.html
21.
Nervegna
,
N.
,
2003
,
Oleodinamica e Pneumatica
,
Politeko
,
Turin, Italy
.
22.
Haas
,
R.
, and
Manhartsgruber
,
B.
,
2010
, “
Compressibility Measurements of Hydraulic Fluids in the Low Pressure Range
,”
Proceedings of the 6th FPNI PhD Symposium
,
West Lafayette, IN
, Vol. 2, pp.
681
690
.
23.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
24.
Athavale
,
M. M.
,
Li
,
H. Y.
,
Jiang
,
Y.
, and
Singhal
,
A. K.
,
2002
, “
Application of the Full Cavitation Model to Pumps and Inducers
,”
Int. J. Rotating Mach.
,
8
(
1
), pp.
45
56
.10.1155/S1023621X02000052
You do not currently have access to this content.