The time-periodic electro-osmotic flow in a microannulus is investigated based on the linearized Poisson–Boltzmann equation. An exact solution of the velocity distribution is obtained by using the Green's function approach. The influences of the geometric radius ratio, the wall ζ potential ratio, the electrokinetic radius, and the dimensionless frequency on velocity profiles are presented. Variations of the geometric radius ratio (between zero and one) can lead to quite different flow behaviors. The wall ζ potential ratio affects the magnitude and direction of the velocity profiles within the electric double layer near the two walls of a microannulus. Depending on the frequency and the geometric radius ratio, the walls identically and/or oppositely charged, both may result in the two-opposite-direction flow in the annulus. For high frequency, the electro-osmotic velocity variations are restricted mainly within a thin layer near the two cylindrical walls. Increasing the electrokinetic radius leads to decrease the electric double layer thickness as well as the maximum velocity near the walls.

References

References
1.
Nguyen
,
N. T.
, and
Wereley
,
S. T.
,
2006
,
Fundamentals and Applications of Microfluidics
,
Artech House
,
Boston
.
2.
Tabeling
,
P.
,
2005
,
Introduction to Microfluidics
,
Oxford University Press
,
New York
.
3.
Ajdari
,
A.
,
1995
, “
Electroosmosis on Inhomogeneously Charged Surfaces
,”
Phys. Rev. Lett.
,
75
, pp.
755
758
.10.1103/PhysRevLett.75.755
4.
Arulanandam
,
S.
, and
Li
,
D.
,
2000
, “
Liquid Transport in Rectangular Microchannels by Electro-Osmotic Pumping
,”
Colloids Surf. A
,
161
, pp.
89
102
.10.1016/S0927-7757(99)00328-3
5.
Dutta
,
P.
, and
Beskok
,
A.
,
2001
, “
Analytical Solution of Combined Electroosmotic/Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects
,”
Anal. Chem.
,
73
, pp.
1979
1986
.10.1021/ac001182i
6.
Tang
,
G. H.
,
Li
,
X. F.
, and
Tao
,
W.Q.
,
2010
, “
Microannular Electro-Osmotic Flow With the Axisymmetric Lattice Boltzmann Method
,”
J. Appl. Phys.
,
108
(
11
), p.
114903
.10.1063/1.3517437
7.
Wang
,
M.
, and
Kang
,
Q.
,
2010
, “
Modeling Elctrokinetic Flows in Microchannels Using Coupled Lattice Boltzmann Methods
,”
J. Comput. Phys.
,
229
, pp.
728
744
.10.1016/j.jcp.2009.10.006
8.
Xuan
,
X. C.
, and
Li
,
D.
,
2005
, “
Electroosmotic Flow in Microchannels With Arbitrary Geometry and Arbitrary Distribution of Wall Charge
,”
J. Colloid Interf. Sci.
,
289
, pp.
291
303
.10.1016/j.jcis.2005.03.069
9.
Kang
,
Y. J.
,
Yang
,
C.
, and
Huang
,
X. Y.
,
2002
, “
Dynamic Aspects of Electroosmotic Flow in a Cylindrical Microcapillary
,”
Int. J. Eng. Sci.
,
40
, pp.
2203
2221
.10.1016/S0020-7225(02)00143-X
10.
Lin
,
T. Y.
, and
Chen
,
C. L.
,
2013
, “
Analysis of Electroosmotic Flow With Periodic Electric and Pressure Fields via the Lattice Poisson-Boltzmann Method
,”
Appl. Math. Model.
,
37
(
5
), pp.
2816
2829
. 10.1016/j.apm.2012.06.032
11.
Tsao
,
H. K.
,
2000
, “
Electroosmotic Flow Through an Annulus
,”
J. Colloid Interf. Sci.
,
225
, pp.
247
250
.10.1006/jcis.1999.6696
12.
Kang
,
Y. J.
,
Yang
,
C.
, and
Huang
,
X. Y.
,
2002
, “
Electroosmotic Flow in a Capillary Annulus With High Zeta Potentials
,”
J. Colloid Interf. Sci.
,
253
, pp.
285
294
.10.1006/jcis.2002.8453
13.
Erickson
,
D.
, and
Li
,
D.
,
2003
, “
Analysis of AC Electroosmotic Flows in a Rectangular Microchannel
,”
Langmuir
,
19
, pp.
5421
5430
.10.1021/la027035s
14.
Dutta
,
P.
, and
Beskok
,
A.
,
2001
, “
Analytical Solution of Time Periodic Electroosmotic Flows: Analogies to Stokes Second Problem
,”
Anal. Chem.
,
73
, pp.
5097
5102
.10.1021/ac015546y
15.
Green
,
N. G.
,
Ramos
,
A.
,
Gonzalez
,
A.
,
Morgan
,
H.
, and
Castellanos
,
A.
,
2000
, “
Fluid Flow Induced by Non-Uniform AC Electric Fields in Electrolytes on Microelectrodes I: Experimental Measurements
,”
Phys. Rev. E
61
, pp.
4011
4018
.10.1103/PhysRevE.61.4011
16.
Gonzalez
,
A.
,
Ramos
,
A.
,
Green
,
N. G.
,
Castellanos
,
A.
, and
Morgan
,
H.
,
2000
, “
Fluid Flow Induced by Non-Uniform AC Electric Fields in Electrolytes on Microelectrodes II: A Linear Double Layer Analysis
,”
Phys. Rev. E
61
, pp.
4019
4028
.10.1103/PhysRevE.61.4019
17.
Brown
,
A. B. D.
,
Smith
,
C. G.
, and
Rennie
,
A. R.
,
2002
, “
Pumping of Water With an AC Electric Field Applied to Asymmetric Pairs of Microelectrodes
,”
Phys. Rev. E
,
63
, pp.
16305 1
8
.
18.
Studer
, V
.
,
Pepin
,
A.
,
Chen
,
Y.
, and
Ajdari
,
A.
,
2002
, “
Fabrication of Microfluidic Devices for AC Electrokinetic Fluid Pumping
,”
Microelectron. Eng.
,
61–62
pp.
915
920
.10.1016/S0167-9317(02)00518-X
19.
Moghadam
,
A. J.
,
2012
, “
An Exact Solution of AC Electro-Kinetic-Driven Flow in a Circular Micro-Channel
,”
Eur. J. Mech. B Fluid.
,
34
, pp.
91
96
.10.1016/j.euromechflu.2012.03.006
20.
Jian
,
Y.
,
Yang
,
L.
, and
Liu
,
Q.
,
2010
, “
Time Periodic Electro-Osmotic Flow Through a Microannulus
,”
Phys. Fluids
,
22
, p.
042001
.10.1063/1.3358473
21.
Kirby
,
B. J.
,
2010
,
Micro- and Nanoscale Fluid Mechanics
,
Cambridge University Press
,
New York
.
22.
Kandlikar
,
S.
,
Garimella
,
S.
,
Li
,
D.
Colin
,
S.
, and
King
,
M. R.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Oxford
.
23.
Haberman
,
R.
,
1987
,
Elementary Applied Partial Differential Equations
,
Prentice Hall
,
Englewood Cliffs, New Jersey
.
You do not currently have access to this content.