Induced draft fans extract coal-fired boiler exhaust gases in the form of a two-phase flow with a dispersed solid phase made of unburnt coal and fly ash; consequently fan blades are subject to erosion causing material wear at the leading edge, trailing edge, and blade surface. Erosion results in blade material loss, a reduction of blade chord, and effective camber that together degrade aerodynamic performance. This paper presents a numerical study of the erosive process in an induced draft fan carried out by simulating the particle laden flow using an original finite element Eulerian-Lagrangian solver. The particle trajectories are calculated using a particle cloud tracking technique that considers drifting near wall and an algebraic erosion model. The numerical study clarifies the influence of fan operation to the determination of the erosion regimes and patterns. In particular, the study investigates the role played by the size and mass distribution of the particles by considering a real composition of the flying ashes in the exhaust flow from a coal-fired boiler. The results illustrate the critical blade areas and erosion rates as given by the particle dynamics of different sizes. A specific analysis of the material wear at the blade leading edge is also given.

References

References
1.
Kurz
,
R.
, and
Brun
,
K.
,
2001
, “
Degradation in Gas Turbine Systems
,”
ASME J. Eng. Gas Turbine Power
,
123
, pp.
70
77
.10.1115/1.1340629
2.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Wenglarz
,
R.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
AIAA J. Propul. Power
,
22
, pp.
350
360
.10.2514/1.18462
3.
Atkin
,
M. L.
, and
Duke
,
G. A.
,
1971
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Particles
,”
Aeronautical Research Laboratory Department of Supply, Australian Defense Scientific Service
, Report 133.
4.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Particles
,”
AIAA J. Aircraft
,
12
, pp.
471
478
.10.2514/3.59826
5.
Richardson
,
J. H.
,
Sallee
,
G. P.
, and
Smakula
,
F. K.
,
1979
, “
Causes of High Pressure Compressor Deterioration In Service
,” AIAA Paper No. 79-1234.
6.
Okita
,
R.
,
Zhang
,
Y.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2012
, “
Experimental and Computational Investigations to Evaluate the Effects of Fluid Viscosity and Particle Size on Erosion Damage
,”
ASME J. Fluids Eng.
,
134
(
6
), p.
061301
.10.1115/1.4005683
7.
Balan
,
C.
, and
Tabakoff
,
W.
,
1984
, “
Axial Compressor Performance Deterioration
,” AIAA Paper No. 84-1208.
8.
Sallee
,
G. P.
,
Kruckenburg
,
H. D.
, and
Toomey
,
E. H.
,
1978
, “
Analysis of Turbofan Engine Performance Deterioration and Proposed Follow-On Tests
,” NASA Report CR-134769.
9.
Ghenaiet
,
A.
,
Tan
,
S. C.
, and
Elder
,
R. L.
,
2004
, “
Experimental Investigation of Axial Fan Erosion and Performance Degradation
,”
AIAA J. Power Energy
,
218
, pp.
437
446
.10.1243/0957650041761900
10.
Sugano
,
H.
,
Yamaguchi
,
N.
, and
Taguchi
,
S.
,
1982
, “
A Study on the Ash Erosion of Axial Induced Draft Fans of Coal-Fired Boilers
,”
TR19, Mitsubishi Heavy Industries
.
11.
Bons
,
J. P.
,
Taylor
,
R. J.
,
McClain
,
S. T.
, and
Rivir
,
R.
,
2001
, “
The Many Manifestations of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
.10.1115/1.1400115
12.
Hussein
,
M. F.
, and
Tabakoff
,
W.
,
1974
, “
Computation and Plotting of Solid Particle Flow in Rotating Cascades
,”
Comput. Fluids
,
2
, pp.
1
15
.10.1016/0045-7930(74)90002-4
13.
Elfeki
,
S.
, and
Tabakoff
,
W.
,
1987
, “
Erosion Study of Radial Flow Compressor With Splitters
,”
ASME J. Turbomach.
,
109
, pp.
62
69
.10.1115/1.3262071
14.
Ghenaiet
,
A.
,
2005
, “
Numerical Simulations of Flow and Particle Dynamics Within a Centrifugal Turbomachine
,”
Compressors Syst.
, IMechE Paper No. C639_52.
15.
Ghenaiet
,
A.
,
2009
, “
Numerical Study of Sand Ingestion Through a Ventilating System
,”
Proceedings of the World Congress on Engineering
, Vol.
2
, WCE 2009,
London, UK
,
July 1–3
.
16.
Suzuki
,
M.
, and
Yamamoto
,
M.
,
2011
, “
Numerical Simulation of Sand Erosion Phenomena in a Single-Stage Axial Compressor
,”
J. Fluid Sci. Technol.
,
6
, pp.
98
113
.10.1299/jfst.6.98
17.
Borello
,
D.
,
Corsini
,
A.
, and
Rispoli
,
F.
,
2003
, “
A Finite Element Overlapping Scheme for Turbomachinery Flows on Parallel Platforms
,”
Comput. Fluids
,
32
, pp.
1017
1047
.10.1016/S0045-7930(02)00034-8
18.
Kirk
,
B. S.
,
Peterson
,
J. W.
,
Stogner
,
R. H.
, and
Carey
,
G. F.
,
2006
, “
LibMesh: a C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations
,”
Eng. Comput.
,
22
, pp.
237
254
.10.1007/s00366-006-0049-3
19.
Baxter
,
L. L.
,
1989
, “
Turbulent Transport of Particles
,” Ph.D. thesis,
Brigham Young University
,
Provo, UT
.
20.
Wang
,
L. P.
,
1990
, “
On the Dispersion of Heavy Particles by Turbulent Motion
,” Ph.D. thesis,
Washington State University
,
Pullman, WA
.
21.
Litchford
,
L. J.
, and
Jeng
,
S. M.
,
1991
, “
Efficient Statistical Transport Model for Turbulent Particle Dispersion in Sprays
,”
AIAA J.
,
29
, pp.
1443
1451
.10.2514/3.59965
22.
Baxter
,
L. L.
, and
Smith
,
P. J.
,
1993
, “
Turbulent Dispersion of Particles: The STP Model
,”
Energy Fuels
,
7
, pp.
852
859
.10.1021/ef00042a022
23.
Jain
,
S.
,
1995
, “
Three-Dimensional Simulation of Turbulent Particle Dispersion
,” Ph.D. thesis,
University of Utah
,
Salt Lake City, UT
.
24.
Kær
,
S. K.
,
2001
, “
Numerical Investigation of Ash Deposition in Straw-Fired Furnaces
,” Ph.D. thesis,
Aalborg University
,
Aalborg, Denmark
.
25.
Venturini
,
P.
,
2010
, “
Modelling of Particle-Wall Deposition in Two-Phase Gas-Solid Flows
,” Ph.D. thesis,
Sapienza Università di Roma
,
Rome, Italy
.
26.
Borello
,
D.
,
Venturini
,
P.
,
Rispoli
,
F.
, and
Saavedra
,
G. Z. R.
,
2013
, “
Prediction of Multiphase Combustion and Ash Deposition Within a Biomass Furnace
,”
Appl. Energy
,
101
, pp.
413
422
.10.1016/j.apenergy.2012.04.031
27.
Corsini
,
A.
,
Marchegiani
,
A.
,
Rispoli
,
F.
, and
Venturini
,
P.
,
2012
, “
Predicting Blade Leading Edge Erosion in an Axial Induced Draft Fan
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
042601
.10.1115/1.4004724
28.
Tabakoff
,
W.
,
Kotwal
,
R.
, and
Hamed
,
A.
,
1979
, “
Erosion Study of Different Materials Affected by Coal Ash Particles
,”
Wear
,
52
, pp.
161
173
.10.1016/0043-1648(79)90206-0
29.
Bengtsson
,
A.
,
2010
, Fläkt Woods AB internal report.
30.
Pandian
,
N. S.
,
2004
, “
Fly Ash Characterization With Reference to Geotechnical Applications
,”
J. Indian Inst. Sci.
,
84
, pp.
189
216
.
31.
Seggiani
,
M.
,
Bardi
,
A.
, and
Vitolo
,
S.
,
2000
, “
Prediction of Fly-Ash Size Distribution: A Correlation Between the Char Transition Radius and Coal Properties
,”
Fuel
,
79
, pp.
999
1002
.10.1016/S0016-2361(99)00230-6
32.
Kleis
,
I.
, and
Kulu
,
P.
,
2008
,
Solid Particle Erosion. Occurrence, Prediction and Control
,
Springer
,
London
.
33.
Corsini
,
A.
,
Rispoli
,
F.
,
Santoriello
,
A.
, and
Tezduyar
,
T.
,
2006
, “
Improved Discontinuity-Capturing Finite Element Techniques for Reaction Effects in Turbulence Computation
,”
Comput. Mech.
,
38
, pp.
356
364
.10.1007/s00466-006-0045-x
34.
Corsini
,
A.
,
Rispoli
,
F.
, and
Santoriello
,
A.
,
2004
, “
A New Stabilized Finite Element Method for Advection-Diffusion-Reaction Equations Using Quadratic Elements
,”
Modelling Fluid Flow
,
T.
Lajos
et al. ., eds.,
Springer
,
Berlin
.
35.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
, pp.
199
259
.10.1016/0045-7825(82)90071-8
36.
Tezduyar
,
T. E.
,
1992
, “
Stabilized Finite Element Formulations for Incompressible Flow Computations
,”
Adv. Appl. Mech.
,
28
, pp.
1
44
.10.1016/S0065-2156(08)70153-4
37.
Tezduyar
,
T. E.
,
Mittal
,
S.
,
Ray
,
S. E.
, and
Shih
,
R.
,
1992
, “
Incompressible Flow Computations With Stabilized Bilinear and Linear Equal-Order-Interpolation Velocity-Pressure Elements
,”
Comput. Methods Appl. Mech. Eng.
,
95
, pp.
221
242
.10.1016/0045-7825(92)90141-6
38.
Corsini
,
A.
,
Rispoli
,
F.
, and
Santoriello
,
A.
,
2005
, “
A Variational Multiscale High-Order Finite Element Formulation for Turbomachinery Flow Computations
,”
Comput. Methods Appl. Mech. Eng.
,
194
, pp.
4797
4823
.10.1016/j.cma.2004.11.013
39.
Corsini
,
A.
,
Iossa
,
C.
,
Rispoli
,
F.
, and
Tezduyar
,
T. E.
,
2010
, “
A DRD Finite Element Formulation for Computing Turbulent Reacting Flows in Gas Turbine Combustors
,”
Comput. Mech.
,
46
, pp.
159
167
.10.1007/s00466-009-0441-0
40.
Corsini
,
A.
,
Rispoli
,
F.
, and
Tezduyar
,
T. E.
,
2011
, “
Stabilized Finite Element Computation of NOx Emission in Aero-Engine Combustors
,”
Int. J. Numer. Methods Fluids
,
65
, pp.
254
270
.10.1002/fld.2451
41.
Corsini
,
A.
,
Rispoli
,
F.
, and
Tezduyar
,
T. E.
,
2012
, “
Computer Modeling of Wave-Energy Air Turbines With the SUPG/PSPG Formulation and Discontinuity-Capturing Technique
,”
ASME J. Appl. Mech.
,
79
, p.
010910
.10.1115/1.4005060
42.
Craft
,
T. J.
,
Launder
,
B. E.
, and
Suga
,
K.
,
1996
, “
Development and Application of a Cubic Eddy-Viscosity Model of Turbulence
,”
Int. J. Heat Fluid Flow
,
17
, pp.
108
155
.10.1016/0142-727X(95)00079-6
43.
Corsini
,
A.
,
Menichini
,
F.
,
Rispoli
,
F.
,
Santoriello
,
A.
, and
Tezduyar
,
T. E.
,
2009
, “
A Multiscale Finite Element Formulation With Discontinuity Capturing for Turbulence Models With Dominant Reaction Like Terms
,”
ASME J. Appl. Mech.
,
76
, p.
021211
.10.1115/1.3062967
44.
Corsini
,
A.
, and
Rispoli
,
F.
,
2005
, “
Flow Analyses in a High-Pressure Axial Ventilation Fan With a Non-Linear Eddy-Viscosity Closure
,”
Int. J. Heat Fluid Flow
,
26
, pp.
349
361
.10.1016/j.ijheatfluidflow.2004.10.002
45.
Corsini
,
A.
,
Rispoli
,
F.
,
Sheard
,
A. G.
, and
Tezduyar
,
T. E.
,
2012
, “
Computational Analysis of Noise Reduction Devices in Axial Fans With Stabilized Finite Element Formulations
,”
Comput. Mech.
,
50
, pp.
695
705
.10.1007/s00466-012-0789-4
46.
Venturini
,
P.
,
Borello
,
D.
,
Iossa
,
C. V.
,
Lentini
,
D.
, and
Rispoli
,
F.
,
2010
, “
Modelling of Multiphase Combustion and Deposit Formation and Deposit Formation in a Biomass-Fed Boiler
,”
Energy
,
35
, pp.
3008
3021
.10.1016/j.energy.2010.03.038
47.
Lecrivain
,
G.
, and
Hampel
,
U.
,
2012
, “
Influence of the Lagrangian Integral Time Scale Estimation in the Near Wall Region on Particle Deposition
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
074502
.10.1115/1.4006912
48.
Smith
,
P. J.
,
1991
, “
3-D Turbulent Particle Dispersion Submodel Development
,”
Quarterly Progress Report #1, Department of Energy, Pittsburgh Energy Technology Center
,
Pittsburgh, PA
.
49.
Oka
,
Y. I.
,
Ohnogi
,
H.
,
Hosokawa
,
T.
, and
Matsumura
,
M.
,
1997
, “
The Impact Angle Dependence of Erosion Damage Caused by Solid Particle Impact
,”
Wear
,
203–204
, pp.
573
579
.10.1016/S0043-1648(96)07430-3
50.
Sheard
,
A. G.
,
Corsini
,
A.
,
Minotti
,
S.
, and
Sciulli
,
F.
,
2009
, “
The Role of Computational Methods in the Development of an Aero-Acoustic Design Methodology: Application to a Family of Large Industrial Fans
,”
14th Conference on Modelling Fluid Flows
,
Budapest, Hungary
,
9–12 September
.
51.
Corsini
,
A.
, and
Rispoli
,
F.
,
2004
, “
Using Sweep to Extend Stall-Free Operational Range in Axial Fan Rotors
,”
J. Power Energy
,
218
, pp.
129
139
.10.1243/095765004323049869
52.
Corsini
,
A.
,
Marchegiani
,
A.
,
Minotti
,
S.
, and
Sheard
,
A. G.
,
2011
, “
Numerical Investigations on the Aerodynamic Performance Influence of Eroded Leading-Edge Geometry on Boiler Fan Performance
,”
European Turbomachinery Conference
,
March 21–25
,
Istanbul, Turkey
.
You do not currently have access to this content.