The external loop airlift reactor (ELALR) is a modified bubble column reactor that is composed of two vertical columns interconnected with two horizontal tubes and is often preferred over traditional bubble column reactors because it can operate over a wider range of conditions. In the present work, the gas-liquid flow dynamics in an ELALR were simulated using an Eulerian–Eulerian ensemble-averaging method with bubble breakup and coalescence effects in a three-dimensional system. The population balance models (PBM) of Luo and Svendsen (1996, “Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions,” AIChE J., 42, pp. 1225–1233) and Prince and Blanch (1990, “Bubble Coalescence and Breakup in Air-Sparged Bubble Columns,” AIChE J., 36, pp. 1485–1499) were used to simulate the bubble breakup and coalescence effects, respectively. The bubble breakup and coalescence closure models were implemented into CFDLib, a multiphase flow source code developed by Los Alamos National Laboratory, and validated with experiments. The computational fluid dynamics (CFD) simulations were then compared to experimental measurements from a 10.2 cm diameter ELALR for superficial gas velocities ranging from 1 to 20 cm/s. From this work, the 3D PBM simulations of an external loop airlift reactor were generally comparable with the 3D single bubble size simulations. However, the 3D PBM simulations have closer agreement with experimental findings than the single bubble size simulations especially regarding the length of gas bubbles in the downcomer.

References

References
1.
Law
,
D.
,
Jones
,
S. T.
,
Battaglia
,
F.
, and
Heindel
,
T. J.
,
2011
, “
A Combined Numerical and Experimental Study of Hydrodynamics for an Air-Water External Loop Airlift Reactor
,”
ASME J. Fluids Eng.
,
133
(
2
), p.
021301
.10.1115/1.4003424
2.
Bandara
,
U. C.
, and
Yapa
,
P. D.
,
2011
, “
Bubble Sizes, Breakup, and Coalescence in Deepwater Gas/Oil Plumes
,”
J. Hydraul. Eng.
,
137
(
7
), pp.
729
738
.10.1061/(ASCE)HY.1943-7900.0000380
3.
Hibiki
,
T.
, and
Ishii
,
M.
,
2002
, “
Interfacial Area Concentration of Bubbly Flow Systems
,”
Chem. Eng. Sci.
,
57
(
18
), pp.
3967
3977
.10.1016/S0009-2509(02)00263-4
4.
Ishii
,
M.
, and
Kim
,
S.
,
2004
, “
Development of One-Group and Two-Group Interfacial Area Transport Equation
,”
Nucl. Sci. Eng.
,
146
(
3
), pp.
257
273
.
5.
Strasser
,
W.
, and
Wonders
,
A.
,
2012
, “
Hydrokinetic Optimization of Commercial Scale Slurry Bubble Column Reactor
,”
AIChE J.
,
58
(
3
), pp.
946
956
.10.1002/aic.12629
6.
Luo
,
H.
, and
Svendsen
,
H. F.
,
1996
, “
Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions
,”
AIChE J.
,
42
, pp.
1225
1233
.10.1002/aic.690420505
7.
Prince
,
M. J.
, and
Blanch
,
H. W.
,
1990
, “
Bubble Coalescence and Breakup in Air-Sparged Bubble Columns
,”
AIChE J.
,
36
, pp.
1485
1499
.10.1002/aic.690361004
8.
Olmos
,
E.
,
Gentric
,
C.
,
Vial
,
C.
,
Wild
,
G.
, and
Midoux
,
N.
,
2001
, “
Numerical Simulation of Multiphase Flow in Bubble Column Reactors: Influence of Bubble Coalescence and Breakup
,”
Chem. Eng. Sci.
,
56
, pp.
6359
6365
.10.1016/S0009-2509(01)00204-4
9.
Wang
,
T. F.
,
Wang
,
J. F.
, and
Jin
,
Y.
,
2006
, “
A CFD-PBM Coupled Model for Gas-Liquid Flows
,”
AIChE J.
,
52
, pp.
125
140
.10.1002/aic.10611
10.
Degaleesan
,
S.
,
Dudukovic
,
M.
, and
Pan
,
Y.
,
2001
, “
Experimental Study of Gas-Induced Liquid Flow Structures in Bubble Columns
,”
AIChE J.
,
47
(
9
), pp.
1913
1931
.10.1002/aic.690470904
11.
Buwa
,
V. V.
, and
Ranade
,
V. V.
,
2002
, “
Dynamics of Gas-Liquid Flow in a Rectangular Bubble Column: Experiments and Single/Multi-Group CFD Simulations
,”
Chem. Eng. Sci.
,
57
, pp.
4715
4736
.10.1016/S0009-2509(02)00274-9
12.
Chen
,
P.
,
Sanyal
,
J.
, and
Dudukovic
,
M. P.
,
2005
, “
Numerical Simulation of Bubble Column Flows: Effect of Different Breakup and Coalescence Closures
,”
Chem. Eng. Sci.
,
60
, pp.
1085
1101
.10.1016/j.ces.2004.09.070
13.
Martinez-Bazan
,
C.
,
Montanes
,
J. L.
, and
Lasheras
,
J. C.
,
1999
, “
On the Break-Up of an Air Bubble Injected into a Fully Developed Turbulent Flow—Part 1. Breakup Frequency
,”
J. Fluid Mech.
,
401
, pp.
157
182
.10.1017/S0022112099006680
14.
Chen
,
P.
,
Dudukovic
,
M. P.
, and
Sanyal
,
J.
,
2005
, “
Three-Dimensional Simulation of Bubble Column Flows With Bubble Coalescence and Breakup
,”
AIChE J.
,
51
(
3
), pp.
696
712
.10.1002/aic.10381
15.
Liu
,
Y.
, and
Li
,
W. Z.
,
2010
, “
Numerical Simulation of Droplet Size Distribution in Vertical Upward Annular Flow
,”
ASME J. Fluids Eng.
,
132
, p.
121402
.10.1115/1.4003152
16.
Saffman
,
P. G.
, and
Turner
,
J. S.
,
1956
, “
On the Collision of Drops in Turbulent Clouds
,”
J. Fluid Mech.
,
1
(
1
), pp.
16
30
.10.1017/S0022112056000020
17.
Lehr
,
F.
,
Millies
,
M.
, and
Mewes
,
D.
,
2002
, “
Bubble-Size Distributions and Flow Fields in Bubble Columns
,”
AIChE J.
,
48
(
11
), pp.
2426
2443
.10.1002/aic.690481103
18.
Jayaprakash
,
A.
,
Singh
,
S.
, and
Chahine
,
G.
,
2011
, “
Experimental and Numerical Investigation of Single Bubble Dynamics in a Two-Phase Bubbly Medium
,”
ASME J. Fluids Eng.
,
133
(12), p.
121305
.10.1115/1.4005424
19.
Das
,
A. K.
,
Das
,
P. K.
, and
Thome
,
J. R.
,
2009
, “
Transition of Bubbly Flow in Vertical Tubes: New Criteria Through CFD Simulation
,”
ASME J. Fluids Eng.
,
131
, p.
091303
.10.1115/1.3203205
20.
Das
,
A. K.
,
Das
,
P. K.
, and
Thome
,
J. R.
,
2009
, “
Transition of Bubbly Flow in Vertical Tubes: Effect of Bubble Size and Tube Diameter
,”
ASME J. Fluids Eng.
,
131
, p.
091304
.10.1115/1.3203206
21.
Oliveira
,
M. S. N.
, and
Ni
,
X. W.
,
2004
, “
Effect of Hydrodynamics on Mass Transfer in a Gas-Liquid Oscillatory Baffled Column
,”
Chem. Eng. J.
,
99
, pp.
59
68
.10.1016/j.cej.2004.01.002
22.
Liao
,
Y. F.
,
Liu
,
J. T.
,
Wang
,
Y. T.
, and
Cao
,
Y. J.
,
2011
, “
Prediction of Gas Holdup in Cyclonic-Static Micro-Bubble Flotation Column Based on BP Neural Networks
,”
J. China Univ. Min. Technol.
,
40
(
3
), pp.
443
447
.
23.
Kashiwa
,
B. A.
,
Padial
,
N. T.
,
Rauenzahn
,
R. M.
, and
VanderHeyden
,
W. B.
,
1993
, “
Cell-Centered Ice Method for Multiphase Flow Simulations
,” Department of Energy, Washington, DC, Report No. LA-UR-93-3922.
24.
Kashiwa
,
B. A.
, and
Rauenzahn
,
R. M.
1994
, “
Multimaterial Formalism
,” Department of Energy, Washington, DC, Report No. LA-UR-94-771.
25.
Kashiwa
,
B. A.
,
1998
, “
An Extended k-Epsilon Turbulence Model for Multiphase Flow
,” Department of Energy, Washington, DC, Report No. LA-UR-98-2923.
26.
Padial
,
N. T.
,
VanderyHeyden
,
W. B.
,
Rauenzahn
,
R. M.
, and
Yarbro
,
S. L.
,
2000
, “
Three-Dimensional Simulation of a Three-Phase Draft-Tube Bubble Column
,”
Chem. Eng. Sci.
,
55
(
16
), pp.
3261
3273
.10.1016/S0009-2509(99)00587-4
27.
Law
,
D.
,
Battaglia
,
F.
, and
Heindel
,
T. J.
,
2008
, “
Model Validation for Low and High Superficial Gas Velocity Bubble Column Flows
,”
Chem. Eng. Sci.
,
63
, pp.
4605
4616
.10.1016/j.ces.2008.07.001
28.
Batchelor
,
G. K.
,
1988
, “
A New Theory of the Instability of a Uniform Fluidized Bed
,”
J. Fluid Mech.
,
193
, pp.
75
110
.10.1017/S002211208800206X
29.
Kumar
,
S.
, and
Ramkrishna
,
D.
,
1996
, “
On the Solution of Population Balance Equations by Discretization—I. A Fixed Pivot Technique
,”
Chem. Eng. Sci.
,
51
, pp.
1311
1332
.10.1016/0009-2509(96)88489-2
30.
Levich
,
V. G.
,
1962
,
Physicochemical Hydrodynamics
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
31.
Kirkpatrick
,
R. D.
, and
Lockett
,
M. J.
,
1974
, “
The Influence of Approach Velocity on Bubble Coalescence
,”
Chem. Eng. Sci.
,
29
, pp.
2363
2373
.10.1016/0009-2509(74)80013-8
32.
Kim
,
W. K.
, and
Lee
,
K. L.
,
1987
, “
Coalescence Behavior of Two Bubbles in Stagnant Liquids
,”
J. Chem. Eng. Jpn.
,
20
, pp.
448
453
.10.1252/jcej.20.448
33.
Miyahara
,
T.
,
Matsuba
,
Y.
, and
Takahashi
,
T.
,
1983
, “
The Size of Bubbles Generated From Perforated Plates
,”
Int. Chem. Eng.
,
23
, pp.
517
523
.
34.
Addessio
,
F. L.
,
Baumgardner
,
J. R.
,
Dukowicz
,
J. K.
,
Johnson
,
N. L.
,
Kashiwa
,
B. A.
,
Rauenzahn
,
R. M.
, and
Zemach
,
C.
,
1990
, “
A Computer Code for Fluid Dynamics Problems With Large Distortion and Internal Slip
,” Report No. LA-10613-MS-REV.
35.
Hirt
,
C. W.
,
Amsden
,
A. A.
, and
Cook
J. L.
,
1974
, “
An Arbitrary Lagrangian-Eulerian Computing Method for all Flow Speeds
,”
J. Comput. Phys.
,
14
, pp.
227
253
.10.1016/0021-9991(74)90051-5
36.
Ekambara
,
K.
,
Nandakumar
,
K.
, and
Joshi
,
J. B.
,
2008
, “
CFD Simulation of Bubble Column Reactor Using Population Balance
,”
Ind. Eng. Chem. Res.
,
47
, pp.
8505
8516
.10.1021/ie071393e
37.
Joshi
,
J. B.
,
2001
, “
Computational Flow Modeling and Design of Bubble Column Reactors
,”
Chem. Eng. Sci.
,
56
(
21–22
), pp.
5893
5933
.10.1016/S0009-2509(01)00273-1
38.
Jones
,
S. T.
,
2007
, “
Gas-Liquid Mass Transfer in an External Airlift Loop Reactor for Syngas Fermentation
,” Ph.D. thesis, Department of Mechanical Engineering, Iowa State University, Ames, IA.
You do not currently have access to this content.