The study of flow physics in microshock tubes is of growing importance with the recent development of microscale technology. The flow characteristics in a microshock tube is considerably different from that of the conventional macroshock tube due to the boundary layer effects and high Knudsen number effects. In the present study an axisymmetric computational fluid dynamics (CFD) method was employed to simulate the microshock tube flow field with Maxwell's slip velocity and temperature jump boundary conditions, to accommodate the rarefaction effects. The effects of finite diaphragm rupture process and partial diaphragm rupture on the flow field and the wave propagations were investigated, in detail. The results show that the shock propagation distance attenuates rapidly for a microshock tube compared to a macroshock tube. For microshock tubes, the contact surface comes closer to the shock front compared to the analytical macroshock tube case. Due to the finite diaphragm rupture process the moving shock front will be generated after a certain distance ahead of the diaphragm and get attenuated rapidly as it propagates compared to the sudden rupture case. The shock-contact distance reduces considerably for the finite diaphragm rupture case compared to the sudden diaphragm rupture process. A partially burst diaphragm within a microshock tube initiates a supersonic flow in the vicinity of the diaphragm similar to that of a supersonic nozzle flow. The supersonic flow expansion leads to the formation of oblique shock cells ahead of the diaphragm and significantly attenuates the moving shock propagation speed.

References

References
1.
Mirels
,
H.
,
1963
, “
Test Time in Low Pressure Shock Tube
,”
Phys. Fluids
,
6
, pp.
1201
1214
.10.1063/1.1706887
2.
Duff
,
R. E.
,
1959
, “
Shock Tube Performance at Initial Low Pressure
,”
Phys. Fluids
,
2
, pp.
207
216
.10.1063/1.1705910
3.
Roshko
,
A.
,
1960
, “
On Flow Duration in Low Pressure Shock Tubes
,”
Phys. Fluids
,
3
, pp.
835
842
.10.1063/1.1706147
4.
Shen
,
C.
,
2005
,
Rarefied Gas Dynamics Fundamentals and Simulation
,
Springer
,
New York
.
5.
Fitchman
,
M.
, and
Hetsroni
,
G.
,
2005
, “
Viscosity and Slip Velocity in Gas Flow in Microchannels
,”
Phys. Fluids
,
17
, p.
123102
.10.1063/1.2141960
6.
Dongari
,
N.
,
Zhang
,
Y.
, and
Reese
,
J. M.
,
2011
, “
Modeling of Knudsen Layer Effects in Micro/Nanoscale Gas Flows
,”
ASME J. Fluid. Eng.
,
133
, p.
071101
.10.1115/1.4004364
7.
Karniadakis
,
G. M.
, and
Beskok
,
A.
,
2002
,
Micro Flows Fundamentals and Simulation
,
Springer
,
New York
.
8.
Duan
,
Z.
, and
Muzychka
,
Y. S.
,
2010
, “
Slip Flow in the Hydrodynamic Entrance Region of Circular and Non Circular Microchannels
,”
ASME J. Fluid. Eng.
,
132
, p.
011201
.10.1115/1.4000692
9.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Yarin
,
L. P.
,
2011
, “
Micro-Channels: Reality and Myth
,”
ASME J. Fluid. Eng.
,
133
, p.
121202
.10.1115/1.4005317
10.
Brouillette
,
M.
,
2003
, “
Shock Waves at Microscales
,”
Shock Waves
,
13
, pp.
3
12
.10.1007/s00193-003-0191-4
11.
Zeitoun
,
D. E.
, and
Burtschell
,
Y.
,
2006
, “
Navier–Stokes Computations in Micro Shock Tubes
,”
Shock Waves
,
15
, pp.
241
246
.10.1007/s00193-006-0023-4
12.
Zeitoun
,
D. E.
,
Burtschell
,
Y.
Graur
,
I. A.
,
Ivanov
,
M. S.
Kudryavtsev
,
A. N.
, and
Bondar
,
Y. A.
,
2009
, “
Numerical Simulation of Shock Wave Propagation in Microchannels Using Continuum and Kinetic Approaches
,”
Shock Waves
,
19
, pp.
307
316
.10.1007/s00193-009-0202-1
13.
Ngomo
,
D.
,
Chaudhuri
,
A.
,
Chinnayya
,
A.
, and
Hadjadj
,
A.
,
2010
, “
Numerical Study of Shock Propagation and Attenuation in Narrow Tubes Including Friction and Heat Losses
,”
Comput. Fluid.
,
39
, pp.
1711
1721
.10.1016/j.compfluid.2010.06.005
14.
Hickman
,
R. S.
,
Farrar
,
L. C.
, and
Kyser
,
J. B.
,
1975
, “
Behavior of Burst Diaphragms in Shock Tubes
,”
Phys. Fluids
,
18
, pp.
1249
1253
.10.1063/1.861010
15.
Outa
,
E.
,
Tajima
,
K.
, and
Hayakawa
,
K.
,
1975
, “
Shock Tube Flow Influenced by Diaphragm Opening (Two-Dimensional Flow Near the Diaphragm)
,”
10th International Symposium on Shock Waves and Shock Tubes
,
Kyoto
,
July 14–16
, pp.
312
319
.
16.
Gaetani
,
P.
,
Guardone
,
A.
, and
Persico
,
G.
,
2008
, “
Shock Tube Flows Past Partially Opened Diaphragms
,”
J. Fluid Mech.
,
602
, pp.
267
286
.10.1017/S0022112008000815
17.
White
,
D. R.
,
1958
, “
Influence of Diaphragm Opening Time on Shock-Tube Flows
,”
J. Fluid Mech.
,
4
, pp.
585
599
.10.1017/S0022112058000677
18.
Matsuo
,
S.
,
Mohammad
,
M.
,
Nakano
,
S.
, and
Kim
,
H. D.
,
2007
, “
Effect of a Diaphragm Rupture Process on Flow Characteristics in a Shock Tube Using Dried Cellophane
,”
Proceedings of the International Conference on Mechanical Engineering, ICME
,
Dhaka, Bangladesh
,
December 29–31
.
19.
Arun
,
K. R.
,
Kim
,
H. D.
, and
Setoguchi
,
T.
,
2013
, “
Computational Analysis of the Wave Motions in Micro Shock Tube Flow
,”
Proc. IMechE Part G: J. Aerospace Eng.
Available at http://pig.sagepub.com/content/early/2013/03/07/0954410013478702.full.pdf+html
20.
Fluent user's guide manual, http://www.fluent.com/
21.
Liepmann
,
H. W.
, and
Roshko
,
A.
,
2002
,
Elements of Gas Dynamics
,
Dover Publications
,
New York
, pp.
79
83
.
You do not currently have access to this content.