In this article developing incompressible viscous fluid flow in concentric and eccentric curved square annuli are numerically studied. A second order finite difference method based on the projection algorithm is implemented to solve the governing equations, including the full Navier–Stokes and continuity equations in a cylindrical coordinate system. To discretize the governing equations in the square annulus, a uniform staggered grid is used to enforce an exact second order numerical scheme. The effects of the governing nondimensional parameters involving the aspect ratio, curvature, Reynolds number, Dean number, and eccentricity on the flow field, both in developing and fully developed regions of the curved annular square duct, are studied in detail. The numerical results obtained indicate that the friction factor in the eccentric curved square annulus increases with the square root of the Dean number (κ1/2) and the aspect ratio and decreases with the eccentricity. Furthermore, when the square root of the Dean number becomes larger than about 17.3, the friction factor increases linearly with the square root of the Dean number in the range of the current study.

References

References
1.
Dean
,
W. R.
,
1927
, “
Note on the Motion of Fluid in a Curved Pipe
,”
Phil. Mag.
,
4
(
7
), pp.
208
223
.
2.
Dean
,
W. R.
,
1928
, “
The Stream-Line Motion of Fluid in a Curved Pipe
,”
Phil. Mag.
,
5
(
30
), pp.
673
695
.
3.
Mori
,
Y.
,
Uchida
,
Y.
, and
Ukon
,
T.
,
1971
, “
Forced Convective Heat Transfer in a Curved Channel With a Square Cross Section
,”
Int. J. Heat Mass Transfer
,
14
(
11
), pp.
1787
1805
.10.1016/0017-9310(71)90047-0
4.
Pedley
,
T. J.
,
1980
,
The Fluid Mechanics of Large Blood Vessels
,
Cambridge University Press
,
Cambridge, UK
.
5.
Dennis
,
S. C. R.
and
Ng
,
M.
,
1982
, “
Dual Solutions for Steady Laminar Flow Through a Curved Tube
,”
Q. J. Mech. Appl. Math.
,
35
(
3
), pp.
305
324
.10.1093/qjmam/35.3.305
6.
Ito
,
H.
,
1987
, “
Flow in Curved Pipes
,”
JSME Int. J.
,
30
(
262
), pp.
543
552
.10.1299/jsme1987.30.543
7.
Kao
,
H. C.
,
1992
, “
Some Aspects of Bifurcation Structure of Laminar Flow in Curved Ducts
,”
J. Fluid Mech.
,
243
, pp.
519
539
.10.1017/S0022112092002805
8.
Nobari
,
M. R. H.
and
Gharali
,
K.
,
2006
, “
A Numerical Study of Flow and Heat Transfer in Internally Fined Rotating Straight Pipes and Stationary Curved Pipes
,”
Int. J. Heat Mass Transfer
,
49
(
5
), pp.
1185
1194
.10.1016/j.ijheatmasstransfer.2005.06.042
9.
Ishigaki
,
H.
,
1993
, “
Fundamental Characteristics of Laminar Flows in a Rotating Curved Pipe
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
,
59
(
561
), pp.
1494
1501
.10.1299/kikaib.59.1494
10.
Ishigaki
,
H.
,
1996
, “
Laminar Flow in Rotating Curved Pipes
,”
J. Fluid Mech.
,
329
, pp.
373
388
.10.1017/S0022112096008956
11.
Ishigaki
,
H.
,
1999
, “
Laminar Convective Heat Transfer in Rotating Curved Pipes
,”
Trans. Jpn. Soc. Mech. Eng., -Ser. B
,
42
(
3
), pp.
489
497
.
12.
Karahalios
,
G. T.
,
1990
, “
Mixed Convection Flow in a Heated Curved Pipe With Core
,”
Phys. Fluids A
,
2
(
12
), pp.
2164
2175
.10.1063/1.857803
13.
Petrakis
,
M. A.
and
Karahalios
,
G. T.
,
1999
, “
Fluid Flow Behaviour in a Curved Annular Conduit
,”
Int. J. Non-Linear Mech.
,
34
(
1
), pp.
13
25
.10.1016/S0020-7462(97)00070-X
14.
Karahalios
,
G. T.
,
1990
, “
Some Possible Effect of a Catheter on the Arterial Wall
,”
Med. Phys.
,
17
(
5
), pp.
922
928
.10.1118/1.596448
15.
Ebadian
,
M. A.
,
1990
, “
Rate of Flow in a Concentric Pipe of Circular Cross-Section
,”
ASME J. Appl. Mech.
,
57
(
4
), pp.
1073
1075
.10.1115/1.2897628
16.
Jayaraman
,
G.
and
K.
Tiwari
,
1995
, “
Flow in a Catheterised Curved Artery
,”
Med. Biol. Eng. Comput.
,
33
(
5
), pp.
1
6
.10.1007/BF02510793
17.
Dash
,
R. K.
,
Jayaraman
,
G.
, and
Mehta
,
K. N.
,
1999
, “
Flow in a Catheterised Curved Artery With Stenosis
,”
J. Biomech.
,
32
(
1
), pp.
49
61
.10.1016/S0021-9290(98)00142-0
18.
Snyder
,
W. T.
,
1963
, “
An Analysis of Slug Flow Heat Transfer in an Eccentric Annulus
,”
AIChE J.
,
9
(
4
), pp.
503
506
.10.1002/aic.690090417
19.
Cheng
,
K. C.
and
Hwang
,
G. J.
, “
Laminar Forced Convection in Eccentric Annuli
,”
AIChE J.
,
14
(
3
), pp.
510
512
.10.1002/aic.690140334
20.
Trombetta
,
L.
,
1971
, “
Laminar Forced Convection in Eccentric Annuli
,”
Int. J. Heat Mass Transfer
,
14
(
8
), pp.
1161
1173
.10.1016/0017-9310(71)90211-0
21.
Susuki
,
K.
,
Szmyd
,
J. S.
, and
Ohtsuka
,
H.
,
1991
, “
Laminar Forced Convection Heat Transfer in Eccentric Annuli
,”
Heat Transfer-Jpn. Res.
,
20
(
2
), pp.
169
183
.
22.
Feldman
,
E. E.
,
Hombeck
,
R. W.
, and
Osterle
,
J. F.
,
1982
, “
A Numerical Solution Laminar Developing Flow in Eccentric Annular Ducts
,”
Int. J. Heat Mass Transfer
,
25
(
2
), pp.
231
241
.10.1016/0017-9310(82)90009-6
23.
Feldman
,
E. E.
,
Hombeck
,
R. W.
, and
Osterle
,
J. F.
,
1982
, “
A Numerical Solution Developing Temperature for Laminar Developing Flow in Eccentric Annular Ducts
,”
Int. J. Heat Mass Transfer
,
25
(
2
), pp.
243
253
.10.1016/0017-9310(82)90010-2
24.
Yang
,
G.
, and
Ebadian
,
M. A.
,
1994
, “
Fluid Flow Behavior in the Curved Annular Sector Duct
,”
ASME J. Fluid Eng.
,
116
(
1
), pp.
53
60
.10.1115/1.2910241
25.
Zanoun
,
E. S.
,
Kito
,
M.
, and
Egbers
,
C.
,
2009
, “
A Study on Flow Transition and Development in Circular and Rectangular Ducts
,”
ASME J. Fluid Eng.
,
131
(
6
), p.
061204
.10.1115/1.3112384
26.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2009
, “
Pressure Drop in Laminar Developing Flow in Noncircular Ducts: A Scaling and Modeling Approach
,”
ASME J. Fluid Eng.
,
131
(
11
), p.
111105
.10.1115/1.4000377
27.
Firouzi
,
M.
, and
Hashemabadi
,
S. H.
,
2009
, “
Analytical Solution for Newtonian Laminar Flow Through the Concave and Convex Ducts
,”
ASME J. Fluid Eng.
,
131
(
9
), p.
094501
.10.1115/1.3184026
28.
Nikitin
,
N.
,
Wang
,
H.
, and
Chernyshenko
,
S.
,
2009
, “
Turbulent Flow and Heat Transfer in Eccentric Annulus
,”
J. Fluid Mech.
,
638
, pp.
95
116
.10.1017/S002211200900812X
29.
Rivas
,
G. A.
,
Garcia
,
E. C.
, and
Assato
,
M.
,
2011
, “
Forced Turbulent Heat Convection in a Square Duct With Non-Uniform Wall Temperature
,”
Int. Commun. Heat Mass Transfer
,
38
(
7
), pp.
844
851
.10.1016/j.icheatmasstransfer.2011.04.005
30.
Chénier
,
E.
,
Petrone
,
G.
,
And Lauriat
,
G.
,
2011
, “
From Natural to Mixed Convection in Horizontal and Differentially Heated Annular Ducts: Linear Stability Analysis
,”
Int. J. Heat Mass Transfer
54
(
23
), pp.
5100
5108
.10.1016/j.ijheatmasstransfer.2011.07.028
31.
Chorin
,
J. A.
, “
Numerical Solution of the Navier-Stokes Equations
,”
Appl. Math. Comput.
,
22
(
104
), pp.
745
762
.
32.
Shah
,
R. K.
and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic
,
New York
.
You do not currently have access to this content.