The aim of this work is to find an effective method to improve the collection efficiency of electrostatic precipitators (ESPs). A mathematic model of an ESP subjected to the external magnetic field was proposed. The model considered the coupled effects between the gas flow field, particle dynamic field and electromagnetic field. Particles following a Rosin-Rammler distribution were simulated under various conditions and the influence of the magnetic field density on the capture of fine particles was investigated. The collection efficiency and the escaped particle size distribution under different applied magnetic field intensities were discussed. Particle trajectories inside the ESP under aerodynamic and electromagnetic forces were also analyzed. Numerical results indicate that the collection efficiency increases with the increase of applied magnetic field. It was also found that a stronger applied magnetic field results in a larger particle deflection towards the dust collection plates. Furthermore, the average diameter of escaping particles decreases and the dispersion of dust particles with different sizes increases with the increasingly applied magnetic field. Finally, the average diameter decreases almost linearly with the magnetic field until it drops to a certain value. The model proposed in this work is able to obtain important information on the particle collection phenomena inside an industrial ESP under the applied magnetic field.

References

References
1.
Schmid
,
H.
, and
Vogel
,
L.
,
2003
, “
On the Modelling of the Particle Dynamics in Electro-Hydrodynamic Flow Fields: I. Comparison of Eulerian and Lagrangian Modeling Approach
,”
Powder Technol.
,
135–136
, pp.
118
135
.10.1016/j.powtec.2003.08.009
2.
Schmid
,
H.
,
2003
, “
On the Modeling of the Particle Dynamics in Electro-Hydrodynamic Flow Fields: II. Influences of Inhomogeneities on Electrostatic Precipitation
,”
Powder Technol.
,
135–136
, pp.
136
149
.10.1016/j.powtec.2003.08.010
3.
Varonos
,
A.
,
Anagnostopoulos
,
J.
, and
Bergeles
,
G.
,
2002
, “
Prediction of the Cleaning Efficiency of an Electrostatic Precipitator
,”
J. Electrost.
,
55
(
2
), pp.
111
133
.10.1016/S0304-3886(01)00187-5
4.
Nikas
,
K.
,
Varonos
,
A.
, and
Bergeles
,
G.
,
2005
, “
Numerical Simulation of the Flow and the Collection Mechanisms Inside a Laboratory Scale Electrostatic Precipitator
,”
J. Electrost.
,
63
(
5
), pp.
423
443
.10.1016/j.elstat.2004.12.005
5.
Choi
,
B.
, and
Fletcher
,
C.
,
1998
, “
Turbulent Particle Dispersion in an Electrostatic Precipitator
,”
Appl. Math. Model.
,
22
(
12
), pp.
1009
1021
.10.1016/S0307-904X(98)10034-3
6.
Nguyen
,
A.
, and
Fletcher
,
C.
,
1999
, “
Particle Interaction with the Wall Surface in Two-Phase Gas Solid Particle Flow
,”
Int. J. Multiphase Flow
,
25
(
1
), pp.
139
154
.10.1016/S0301-9322(98)00038-X
7.
Lee
,
B.
,
Tu
,
J.
, and
Fletcher
,
C.
,
2002
, “
On Numerical Modeling of Particle–Wall Impaction in Relation to Erosion Prediction: Eulerian Versus Lagrangian Method
,”
Wear
,
252
(
3–4
), pp.
179
188
.10.1016/S0043-1648(01)00838-9
8.
Xu
,
D.
,
Li
,
J.
,
Wu
,
Y.
,
Wang
,
L.
,
Sun
,
D.
,
Liu
,
Z.
, and
Zhang
,
Y.
,
2003
, “
Discharge Characteristics and Applications for Electrostatic Precipitation of DC Corona With Spraying Discharge Electrodes
,”
J. Electrost.
,
57
(
3–4
), pp.
217
224
.10.1016/S0304-3886(02)00161-4
9.
Xu
,
D.
,
Sheng
,
L. X.
,
Wang
,
H. J.
,
Sun
,
Y. H.
,
Zhang
,
X. Y.
, and
Mi
,
J. F.
,
2007
, “
Study of Magnetically Enhanced Corona Pre-Charger
,”
J. Electrost.
,
65
(
2
), pp.
101
106
.10.1016/j.elstat.2006.07.007
10.
Zhang
,
J. P.
,
Ding
,
Q. F.
,
Dai
,
Y. X.
, and
Ren
,
J. X.
,
2011
, “
Analysis of Collection Efficiency in Wire-Duct Electrostatic Precipitators Subjected to the Applied Magnetic Field
,”
IEEE Trans. Plasma Sci.
,
39
(
1
), pp.
569
575
.10.1109/TPS.2010.2087364
11.
Suda
,
J. M.
,
Ivancsy
,
T.
,
Kiss
,
I.
, and
Berta
,
I.
,
2006
, “
Complex Analysis of Ionic Wind in ESP Modeling
,”
The 10th International Conference on Electrostatic Precipitator
,
Australia
.
12.
Egli
,
W.
,
Kogelschatz
,
U.
,
Gerteisenb
,
E. A.
, and
Gruberc
,
R.
,
1997
, “
3D Computation of Corona, Ion Induced Secondary Flows and Particle Motion in Technical ESP Configurations
,”
J. Electrost.
,
40–41
, pp.
425
430
.10.1016/S0304-3886(97)00082-X
13.
FLUENT 6.2 User's Guide
,
2005
,
Fluent Inc.
,
Lebanon, New Hampshire
.
14.
Maxey
,
R.
, and
Riley
,
J.
,
1983
, “
Equation of Motion for a Small Rigid Sphere in an Nonuniform Flow
,”
Phys. Fluids
,
26
, pp.
883
889
.10.1063/1.864230
15.
Berlemont
,
A.
,
Desjonqueres
,
P.
, and
Gouesbet
,
G.
,
1990
, “
Particle Lagrangian Simulation in Turbulent Flows
,”
Int. J. Multiphase Flow
,
16
, pp.
19
34
.10.1016/0301-9322(90)90034-G
16.
Schmid
,
H.
,
1999
,
Zum Partikeltransport in Elektrischen Abscheidern
,
Shaker, Aachen
,
Germany
.
17.
Lei
,
H.
,
Wang
,
L.
, and
Wu
,
Z.
,
2008
, “
EHD Turbulent Flow and Monte-Carlo Simulation for Particle Charging and Tracing in a Wire-Plate Electrostatic Precipitator
,”
J. Electrost.
,
66
(
3–4
), pp.
130
141
.10.1016/j.elstat.2007.11.001
18.
Nouri
,
H.
, and
Zebboudj
,
Y.
,
2010
, “
Analysis of Positive Corona in Wire–to–Plate Electrostatic Precipitator
,”
Eur. Phys. J.: Appl. Phys.
,
49
(
1
), pp.
1
9
.10.1051/epjap/2009181
19.
Lei
,
H.
,
2006
, “
Charge–Current–Conservation Model for Calculating Electrical Conditions in a Wire-Plate Electrostatic
,”
IEEE Trans. Dielectr. Electr. Insul.
,
4
(
13
), pp.
795
801
.
20.
Parker
,
K.
,
Applied Electrostatic Precipitator
(
Blackie
,
London
,
1997
).
21.
Lawless
,
P.
, and
Sparks
,
L.
,
1980
, “
A Mathematical Model for Calculating Effects of Back Corona in Wire-Duct Electrostatic Precipitators
,”
J. Appl. Phys.
,
51
(
1
), pp.
242
256
. 10.1063/1.327416
22.
Penney
,
G.
, and
Matick
,
R.
,
1960
, “
Potentials in DC Corona Fields
,”
Trans. AIEE
,
79
(
5
), pp.
91
99
. Available at http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6368550&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F6367273%2F6368547%2F06368550.pdf%3Farnumber%3D6368550
You do not currently have access to this content.