Taking a lead from the humpback whale flukes, characterized by a series of bumps that result in a sinusoidal-like leading edge, this paper reports on a three-dimensional numerical study of sinusoidal leading edges on cambered airfoil profiles. The turbulent flow around the cambered airfoil with the sinusoidal leading edge was computed at different angles of attack with the open source solver OpenFOAM, using two different eddy viscosity models integrated to the wall. The reported research focused on the effects of the modified leading edge in terms of lift-to-drag performance and the influence of camber on such parameters. For these reasons a comparison with a symmetric airfoil is provided. The research was primarily concerned with the elucidation of the fluid flow mechanisms induced by the bumps and the impact of those mechanisms on airfoil performance, on both symmetric and cambered profiles. The bumps on the leading edge influenced the aerodynamic performance of the airfoil, and the lift curves were found to feature an early recovery in post-stall for the symmetric profile with an additional gain in lift for the cambered profile. The bumps drove the fluid dynamic on the suction side of the airfoil, which in turn resulted in the capability to control the separation at the trailing edge in coincidence with the peak of the sinusoid at the leading edge.

References

References
1.
Gravdahl
,
J. T.
, and
Egeland
,
O.
,
1999
,
Compressor Surge and Rotating Stall: Modelling and Control
,
Springer
,
London
.
2.
Weichert
,
S.
, and
Day
,
I.
,
2012
, “
Detailed Measurements of Spike Formation in an Axial Compressor
,”
Proceedings of ASME-IGTI TurboExpo 2012
, Copenhagen, Denmark, GT2012-68627.
3.
Sheard
,
A. G.
,
Corsini
,
A.
, and
Bianchi
,
S.
,
2011
, “
Stall Warning in a Low-Speed Axial Fan by Visualisation of Sound Signals
,”
ASME J. Eng. Gas Turbines Power
,
133
, p.
041601
.10.1115/1.4002178
4.
Langston
,
L. S.
,
2009
, “
Fitting a Pitch
,”
ASME Mech. Eng. Mag.
,
131
(
12
), pp.
38
42
.
5.
Bianchi
,
S.
,
Corsini
,
A.
,
Mazzucco
,
L.
,
Monteleone
,
L.
, and
Sheard
,
A. G.
,
2012
, “
Stall Inception, Evolution and Control in a Low Speed Axial Fan With Variable Pitch in Motion
,”
ASME J. Eng. Gas Turbines Power
,
134
, p.
042602
.10.1115/1.4004726
6.
Corsini
,
A.
, and
Rispoli
,
F.
,
2004
, “
Using Sweep to Extend the Stall-Free Operational Range in Axial Fan Rotors
,”
Proc. IMechE Part A
,
218
, pp.
129
139
.10.1243/095765004323049869
7.
Kroger
,
G.
,
Voβ
,
C.
,
Nicke
,
E.
, and
Cornelius
,
C.
,
2011
, “
Theory and Application of Axisymmetric Endwall Contouring For Compressors
,”
Proceedings of ASME-IGTI TurboExpo 2011
, Vancouver, Canada, GT2011-45624.
8.
Paduano
,
J. D.
,
Greitzer
,
E. M.
, and
Epstein
,
A. H.
,
2001
, “
Compression System Stability and Active Control
,”
Ann. Rev. Fluid Mech.
,
33
, pp.
491
517
.10.1146/annurev.fluid.33.1.491
9.
Liu
,
Y.
,
Dhingra
,
M.
, and
Prasad
,
J. V. R.
,
2009
, “
Active Compressor Stability Management via a Stall Margin Control Mode
,” ASME Paper No. GT2009-60140.
10.
Morris
,
W. J.
II
, and
Rusak
,
Z.
,
2011
, “
Stall Onset on Airfoils at Moderately High Reynolds Number Flows
,”
ASME J. Fluids Eng.
,
133
(
11
), p. 111104.10.1115/1.4005101
11.
White
,
E. R.
, and
Miller
,
T. F.
,
2010
, “
A Serendipitous Application of Supercavitation Theory to the Water-Running Basilisk Lizard
,”
ASME J. Fluids Eng.
,
132
(
5
), p. 054501.10.1115/1.4001487
12.
Shyy
,
W.
,
Lian
,
Y.
,
Tang
,
J.
,
Viieru
,
D.
, and
Liu
,
H.
,
2008
,
Aerodynamics of Low Reynolds Number Flyers
,
Cambridge University Press
,
Cambridge
.
13.
Fish
,
F. E.
,
1993
, “
Influence of Hydrodynamic Design and Propulsive Mode on Mammalian Swimming Energetics
,”
Aust. J. Zool.
,
42
, pp.
79
101
.10.1071/ZO9940079
14.
Fish
,
F. E.
,
Howle
,
L. E.
, and
Murray
,
M. M.
,
2008
, “
Hydrodynamic Flow Control in Marine Mammals
,”
Integr. Compar. Biol.
,
48
(
6
), pp.
788
800
.10.1093/icb/icn029
15.
Hua
,
X.
,
Gu
,
R.
,
Jin
,
J.
,
Liu
,
Y.
,
Ma
,
Y.
,
Cong
,
Q.
, and
Zheng
,
Y.
,
2010
,“
Numerical Simulation and Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil Under Low-Reynolds
,”
Adv. Natural Sci.
,
3
(
2
), pp.
244
250
.
16.
Fish
,
F. E.
, and
Battle
,
J. M.
,
1995
,“
Hydrodynamic Design of the Humpback Whale Flipper
,”
J. Morphol.
,
225
, pp.
51
60
.10.1002/jmor.1052250105
17.
Miklosovic
,
D. S.
,
Murray
,
M. M.
,
Howle
,
L. E.
, and
Fish
,
F. E.
,
2004
, “
Leading-Edge Tubercles Delay Stall on Humpback Whale (Megaptera novaeangliae) Flippers
,”
Phys. Fluids
,
16
, pp.
L39
L42
.10.1063/1.1688341
18.
Miklosovic
,
D. S.
,
Murray
,
M. M.
, and
Howle
,
L. E.
,
2007
, “
Experimental Evaluation of Sinusoidal Leading Edges
,”
J. Aircraft
,
44
, pp.
1404
1408
.10.2514/1.30303
19.
Pedro
,
H. T. C.
, and
Kobayashi
,
M. H.
,
2008
, “
Numerical Study of Stall Delay on Humpback Whale Flippers
,” 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7–10 January.
21.
van Nierop
,
E. A.
,
Alben
,
S.
, and
Brenner
,
M. P.
,
2008
, “
How Bumps on the Whale Flippers Delay Stall: An Aerodynamic Model
,”
Phys. Rev. Lett.
,
100
, p.
054502
.10.1103/PhysRevLett.100.054502
22.
Johari
,
H.
,
Henoch
,
C.
,
Custodio
,
D.
, and
Levshin
,
A.
,
2007
, “
Effects of Leading-Edge Protuberances on Airfoil Performance
,”
AIAA J.
,
45
(
11
), pp.
2634
2642
.10.2514/1.28497
23.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
, pp.
620
631
.10.1063/1.168744
24.
Lien
,
F. S.
, and
Leschziner
,
M. A.
,
1994
, “
Assessment of Turbulence-Transport Models Including Non-Linear RNG Eddy-Viscosity Formulation and Second-Moment Closure for Flow Over a Backward-Facing Step
,”
Comput. Fluids
,
23
, pp.
983
1004
.10.1016/0045-7930(94)90001-9
25.
Launder
,
B. E.
, and
Sharma
,
B. R.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
, pp.
131
138
.10.1016/0094-4548(74)90150-7
26.
Sheldahl
,
R. E.
, and
Klimas
,
P. C.
,
1981
, “
Aerodynamic Characteristics of Seven Airfoil Sections Through 180 Degrees Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines
,” Sandia National Laboratories, Albuquerque, NM, SAND80-2114.
27.
Drela
,
M.
,
1989
, “
XFoil: An Analysis and Design System for Low Reynolds Number Airfoils
,” Conference on Low Reynolds Number Airfoil Aerodynamics, University of Notre Dame, IN.
28.
Durbin
,
B.
,
2011
, “
Review: Adapting Scalar Turbulence Closure Models for Rotation and Curvature
,”
ASME J. Fluids Eng.
,
133
(6), p. 061205.10.1115/1.4004150
29.
Sheard
,
A. G.
,
Delibra
,
G.
, and
Corsini
,
A.
,
2012
, “
Air Movement Fans
”, U.S. Patent No. GB 1,219,502.0.
You do not currently have access to this content.