A novel, passive, scaled-up micromixer based on fluid rotation is proposed and evaluated experimentally and numerically over Reynolds numbers ranging from 0.5 to 100. Flow visualization is employed to qualitatively assess flow patterns, while induced fluorescence is used to quantify species distribution at five locations along the channel length. Two individual fluids are supplied to the test section via a Y-inlet. The fluid enters a meandering channel with four semicircular portions, each of which is lined with nine slanted grooves at the bottom surface. The main mixing channel is 3 mm wide and 0.75 mm deep, with a total length of 155.8 mm. Numerical simulations confirm rotation at all investigated Reynolds numbers, and the strength of rotation increases with increasing Reynolds number. Grooves are employed to promote helical flow, while the serpentine channel structure results in the formation of Dean vortices at Re ≥ 50 (Dean number ≥ 18.25), where momentum has a more significant effect. A decreasing-increasing trend in the degree of mixing was noted, with an inflection point at Re = 5, marking the transition from diffusion dominance to advection dominance. The increase in interfacial surface area is credited with the improved mixing in the advection-dominant regime, while high residence time allowed for significant mass diffusion in the diffusion-dominant regime. Good mixing was achieved at both high and low Reynolds numbers, with a maximum mixing index of 0.90 at Re = 100.

References

References
1.
Jeong
,
G. S.
,
Chung
,
S.
,
Kim
,
C. B.
, and
Lee
,
S. H.
,
2010
, “
Applications of Micromixing Technology
,”
Analyst
,
135
, pp.
460
473
.10.1039/b921430e
2.
Nguyen
,
N. T.
, and
Wu
,
Z.
,
2005
, “
Micromixers-A Review
,”
J. Micromech. Microeng.
,
15
, pp.
R1
R16
.10.1088/0960-1317/15/2/R01
3.
Hessel
,
V.
,
Löwe
,
H.
, and
Schönfeld
,
F.
,
2005
, “
Micromixers-A Review on Passive and Active Mixing Principles
,”
Chem. Eng. Sci.
,
60
, pp.
2479
2501
.10.1016/j.ces.2004.11.033
4.
Aubin
,
J.
,
Ferrando
,
M.
, and
Jiricny
,
V.
,
2010
, “
Current Methods for Characterising Mixing and Flow in Microchannels
,”
Chem. Eng. Sci.
,
65
, pp.
2065
2093
.10.1016/j.ces.2009.12.001
5.
Elmabruk
,
A. M.
,
Ye
,
M.
,
Wang
,
Y.
, and
Dai
,
Y.
,
2008
, “
A State-of-the-Art Review of Mixing in Microfluidic Mixers
,”
Chin. J. Chem. Eng.
,
16
(
4
), pp.
503
516
.10.1016/S1004-9541(08)60114-7
6.
Hsiung
,
S. K.
,
Lee
,
C. H.
,
Lin
,
J. L.
, and
Lee
,
C. B.
,
2007
, “
Active Micro-Mixers Utilizing Moving Wall Structures Activated Pneumatically by Buried Side Chambers
,”
J. Micromech. Microeng.
,
17
, pp.
129
138
.10.1088/0960-1317/17/1/017
7.
Vilfan
,
M.
,
Potočnik
,
A.
,
Kavčič
,
B.
,
Osterman
,
N.
,
Poberaj
,
I.
,
Vilfan
,
A.
, and
Babič
,
D.
,
2010
, “
Self-Assembled Artificial Cilia
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
5
), pp.
1844
1847
.10.1073/pnas.0906819106
8.
Affanni
,
A.
, and
Chiorboli
,
G.
,
2010
, “
Development of an Enhanced MHD Micromixer Based on Axial Flow Modulation
,”
Sens. Actuators B
,
147
, pp.
748
754
.10.1016/j.snb.2010.03.077
9.
Luong
,
T.-D.
,
Phan
,
V.-N.
, and
Nguyen
,
N.-T.
,
2011
, “
High-Throughput Micromixers Based on Acoustic Streaming Induced by Surface
,”
Microfluid. Nanofluid.
,
10
, pp.
619
625
.10.1007/s10404-010-0694-0
10.
Jeon
,
W.
, and
Shin
,
C. B.
,
2009
, “
Design and Simulation of Passive Mixing in Microfluidic Systems With Geometric Variations
,”
Chem. Eng. J.
,
152
, pp.
575
582
.10.1016/j.cej.2009.05.035
11.
Lin
,
Y. C.
,
Chung
,
Y. C.
, and
Wu
,
C. Y.
,
2007
, “
Mixing Enhancement of the Passive Microfluidic Mixer With J-Shaped Baffles in the Tee Channel
,”
Biomed. Microdevices
,
9
, pp.
215
221
.10.1007/s10544-006-9023-5
12.
Bhagat
,
A. A. S.
,
Peterson
,
E. T. K.
, and
Papautsky
,
I.
,
2007
, “
A Passive Planar Micromixer With Obstructions for Mixing at Low Reynolds Numbers
,”
J. Micromech. Microeng.
,
17
, pp.
1017
1024
.10.1088/0960-1317/17/5/023
13.
Hessel
,
V.
,
Hardt
,
S.
,
Löwe
,
H.
, and
Schönfeld
,
F.
,
2003
, “
Laminar Mixing in Different Interdigital Micromixers: I. Experimental Characterization
,”
AIChE J.
,
49
(
3
), pp.
566
577
.10.1002/aic.690490304
14.
Adeosun
,
J. T.
, and
Lawal
,
A.
,
2009
, “
Numerical and Experimental Mixing Studies in a MEMs-based Multilaminated/Elongated Flow Micromixer
,”
Sens. Actuators B
,
139
, pp.
637
647
.10.1016/j.snb.2009.03.037
15.
Xie
,
H.
,
Fan
,
Y.
, and
Yang
,
H.
,
2011
, “
New 3D SAR Micromixer Based on 2D Standard Photolithographic Technique
,”
Micro Nano Lett.
,
6
(
6
), pp.
366
371
.10.1049/mnl.2011.0091
16.
Li
,
L.
,
Yang
,
C.
,
Shi
,
H.
,
Liao
,
W.-C.
,
Huang
,
H.
,
Lee
,
L. J.
,
Castro
,
J. M.
, and
Yi
,
A. Y.
,
2010
, “
Design and Fabrication of an Affordable Polymer Micromixer for Medical and Biomedical Applications
,”
Polym. Eng. Sci.
,
50
(
8
), pp.
1594
1604
.10.1002/pen.21648
17.
Stroock
,
A. D.
,
Dertinger
,
S. K. W.
,
Ajdari
,
A.
,
Mezić
,
I.
,
Stone
,
H. A.
, and
Whitesides
,
G. M.
,
2002
, “
Chaotic Mixer for Microchannels
,”
Science
,
295
, pp.
647
651
.10.1126/science.1066238
18.
Lynn
,
N. S.
, and
Dandy
,
D. S.
,
2007
, “
Geometric Optimization of Helical Flow in Grooved Micromixers
,”
Lab Chip
,
7
(
5
), pp.
580
587
.10.1039/b700811b
19.
Du
,
Y.
,
Zhang
,
Z.
,
Yim
,
C. H.
,
Lin
,
M.
, and
Cao
,
X.
,
2010
, “
A Simplified Design of the Staggered Herringbone Micromixer for Practical Applications
,”
Biomicrofluidics
,
4
, p.
204105
.
20.
Somashekar
,
V.
,
Olsen
,
M. G.
, and
Stremler
,
M. A.
,
2009
, “
Flow Structure in a Wide Microchannel With Surface Grooves
,”
Mech. Res. Commun.
,
36
, pp.
125
129
.10.1016/j.mechrescom.2008.07.009
21.
Schönfeld
,
F.
, and
Hardt
,
S.
,
2004
, “
Simulation of Helical Flows in Microchannels
,”
AIChE J.
,
50
(
4
), pp.
771
778
.10.1002/aic.10071
22.
Wiggins
,
S.
, and
Ottino
,
J. M.
,
2004
, “
Foundations of Chaotic Mixing
,”
Philos. Trans. R. Soc. London, Ser. A
,
362
, pp.
937
970
.10.1098/rsta.2003.1356
23.
Aref
,
H.
,
1984
, “
Stirring by Chaotic Advection
,”
J. Fluid Mech.
,
143
, pp.
1
21
.10.1017/S0022112084001233
24.
Jiang
,
F.
,
Drese
,
K. S.
,
Hardt
,
S.
,
Kupper
,
M.
, and
Schonfeld
,
F.
,
2004
, “
Helical Flows and Chaotic Mixing in Curved Micro Channels
,”
AIChE J.
,
50
(
9
), pp.
2297
2305
.10.1002/aic.10188
25.
Tsai
,
R.-T.
, and
Wu
,
C.-Y.
,
2011
, “
An Efficient Micromixer Based on Multidirectional Vortices Due to Baffles and Channel Curvature
,”
Biomicrofluidics
,
5
, p.
014103
.10.1063/1.3552992
26.
Liu
,
R. H.
,
Stremler
,
R. A.
,
Sharp
,
K. V.
,
Olsen
,
M. G.
,
Santiago
,
J. G.
,
Adrian
,
R. J.
,
Aref
,
H.
, and
Beebe
,
D. J.
,
2000
, “
Passive Mixing in a Three Dimensional Serpentine Microchannel
,”
J. Microelectromech. Syst.
,
9
(
2
), pp.
190
197
.10.1109/84.846699
27.
Fan
,
Y. F.
, and
Hassan
,
I.
,
2010
, “
Experimental and Numerical Investigation of a Scaled-Up Passive Micromixer Using Fluorescence Technique
,”
Exp. Fluids
,
49
, pp.
733
747
.10.1007/s00348-010-0846-8
28.
Xia
,
H. M.
,
2009
, “
Fluid Mixing Enhancement Through Chaotic Advection in Mini/Micro-Channel
,” Ph.D. thesis,
National University of Singapore
,
Singapore
.
29.
Hardt
,
S.
, and
Schönfeld
,
F.
,
2003
, “
Laminar Mixing in Different Interdigital Micromixers: II. Numerical Simulations
,”
AIChE J.
,
49
(
3
), pp.
578
584
.10.1002/aic.690490305
30.
Howell
,
P. B.
, Jr.
,
Mott
,
D. R.
,
Ligler
,
F. S.
,
Golden
,
J. P.
,
Kaplan
,
C. R.
, and
Oran
,
E. S.
,
2008
, “
A Combinatorial Approach to Microfluidic Mixing
,”
J. Micromech. Microeng.
,
18
, p.
115091
.10.1088/0960-1317/18/11/115019
31.
Ansari
,
M. A.
,
Kim
,
K. Y.
,
Anwar
,
K.
, and
Kim
,
S. M.
,
2010
, “
A Novel Passive Micromixer Based on Unbalanced Splits and Collisions of Fluid Streams
,”
J. Micromech. Microeng.
,
20
, p.
055007
.10.1088/0960-1317/20/5/055007
32.
Cook
,
K. J.
,
Fan
,
Y. F.
, and
Hassan
,
I. G.
,
2011
, “
Experimental Investigation of a Scaled-Up Passive Micromixer With Uneven Interdigital Inlet and Tear-Drop Obstruction Elements
,”
Exp. Fluids
,
52
(
5
), pp.
1261
1275
.10.1007/s00348-011-1246-4
33.
Lu
,
Z.
,
McMahon
,
J.
,
Mohamed
,
H.
,
Barnard
,
D.
,
Shaikh
,
T. R.
,
Manella
,
C. A.
,
Wagenknecht
,
T.
, and
Lu
,
T. M.
,
2010
, “
Passive Microfluidic Device for Submillisecond Mixing
,”
Sens. Actuators B
,
144
, pp.
301
309
.10.1016/j.snb.2009.10.036
34.
Fan
,
Y. F.
,
2009
, “
Experimental and Numerical Investigations of Novel Passive Micromixers Using μ-IF
,” MASc. thesis,
Concordia University
,
Montreal
.
You do not currently have access to this content.