In this paper, the design, microfabrication, and direct measurement of the static pressure distribution for the aerodynamics of a single-crystal-silicon microscale supersonic nozzle are described. The microscale supersonic nozzle has a convergent–divergent section and a throat area of 100μm × 300μm. The microscale supersonic nozzle was fabricated by silicon bulk micromachining technology. The degree of the rarefaction of nozzle flow was determined by the Knudsen number (Kn). The operation envelope that determines whether the continuum or rarefied flow assumption is appropriate can be expressed as a function of Kn and related parameters. The effect of nonadiabatic operation on microscale nozzle flow was investigated on the basis of wall heat transfer. These physical correlations were taken into account for the classical Shapiro's equations to analyze the microscale nozzle flow aerodynamics (Shapiro, 1953, The Dynamics and Thermodynamics of Compressible Fluid Flow, Ronald, New York, Chap. 7,8; Greitzer et al., 2006, Internal Flow, Cambridge University, Cambridge, UK, Chap. 2,10). Furthermore, the solutions of Shapiro's equations were compared with the experimental results by the authors and other research institutions in order to demonstrate the validity of the proposed aerodynamics design concept for microscale continuum flow.

References

References
1.
Epstein
,
A. H.
,
2004
, “
Millimeter-Scale, Micro-Electro-Mechanical Systems Gas turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
125
, pp.
205
226
.10.1115/1.1739245
2.
Spadaccini
,
C. M.
,
Mehra
,
A.
,
Lee
,
J.
,
Zhang
,
X.
,
Lukachko
,
S.
, and
Waitz
, I
. A.
,
2003
, “
High Power Density Silicon Combustion Systems for Micro Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
125
, pp.
709
719
.10.1115/1.1586312
3.
Namura
,
M.
, and
Toriyama
,
T.
,
2012
, “
Aero-Thermodynamic Consideration of Single-Crystal-Silicon Premixed-Fuel Microscale Can Combustor
,”
ASME J. Eng. Gas Turbines Power
,
134
, p.
071501
.10.1115/1.4006059
4.
Reed
,
B. D.
,
de Groot
,
W.
, and
Dang
,
L.
,
2001
, “
Experimental Evaluation of Cold Flow Micronozzles
,” AIAA Paper No. 2001-3521.
5.
Bayt
,
R. L.
, and
Breuer
,
K. S.
,
1998
Viscous Effects in Supersonic MEMS-Fabricated Nozzles,
Proceedings of the 1998 ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, ASME
.
New York
, pp.
117
123
.
6.
Hitt
,
D. L.
,
Zakrzwski
,
C. M.
, and
Thomas
,
M. A.
,
2001
, “
MEMS-Based Satellite Micropropulsion via Catalyzed Hydrogen Peroxide Decomposition
,”
Smart Mater. Struct.
,
10
, pp.
1163
1175
.10.1088/0964-1726/10/6/305
7.
Mueller
,
J.
,
Chakraborty
,
I.
,
Bame
,
D.
, and
Tang
,
W.
,
2000
, “
Vaporizing Liquid Microthruster Concept. Preliminary Results of Initial Feasibility Studies
,”
Micropropulsion for Small Spacecraft, Progress in Astronautics and Aeronautics, Vol. 187
,
M.
Micci
and
A.
Ketsdever
, eds.,
AIAA
,
Reston, VA
, pp.
215
230
.
8.
London
,
S. A. P.
,
Epstein
,
A. H.
, and
Kerrebrock
,
J. L.
,
2001
, “
High-Temperature Bipropellant Microrocket Engine
,”
J. Propul. Power
,
17
(
4
), pp.
780
787
.10.2514/2.5833
9.
Bayt
,
R. L.
,
1999
, “
Analysis, Fabrication and Testing of a MEMS-Based Micropropulsion System
,” Ph.D. thesis, Department of Aeronautics and Astronautics, MIT, Cambridge, MA.
10.
Bayt
,
R. L.
, and
Kenneth
,
S. B.
,
2001
, “
Analysis and Testing of a Silicon Intrinsic-Point Heater in a Micropropulsion Application
,”
Sens. Actuators
, A,
91
, pp.
249
255
.10.1016/S0924-4247(01)00594-5
11.
Arkilic
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
,
1997
, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
,
6
, pp.
167
178
.10.1109/84.585795
12.
Nagai
,
H.
,
Naraoka
,
R.
,
Sawada
,
K.
, and
Asai
,
K.
,
2008
, “
Pressure-Sensitive Paint Measurement of Pressure Distribution in a Supersonic Micronozzle
,”
AIAA J.
,
46
, pp.
215
222
.10.2514/1.28371
13.
Alexeenko
,
A. A.
,
Fedosov
,
D. A.
,
Gimelshein
,
S. F.
,
Levin
,
D. A.
, and
Collins
,
R. J.
,
2006
, “
Transient Heat Transfer and Gas Flow in a MEMS-Based Thruster
,”
J. Microelectromech. Syst.
,
15
, pp.
181
194
.10.1109/JMEMS.2005.859203
14.
Alexeenko
,
A. A.
,
Levin
,
D. A.
,
Fedosov
,
D. A.
,
Gimelshein
,
S. F.
, and
Collins
,
R. J.
,
2005
, “
Performance Analysis of Microthrusters Based on Coupled Thermal-Fluid Modeling and Simulation
,”
J. Propul. Power
,
21
, pp.
95
101
.10.2514/1.5354
15.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
,
Ronald
,
New York
, Chap. 7,8.
16.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2006
,
Internal Flow
,
Cambridge University
,
Cambridge, UK
, Chap. 2,10.
17.
Heiser
,
W. H.
, and
Pratt
,
D. T.
,
1994
, “
Hypersonic Airbreathing Propulsion
,”
American Institute of Aeronautics and Astronautics Inc.
,
Reston, VA
, Chap. 2.
18.
Beskok
,
A.
, and
Karniadakis
,
G. E.
,
1994
, “
Simulation of Heat and Momentum Transfer in Complex Microgeometries
,”
J. Thermophys. Heat Transfer
,
8
, pp.
647
655
.10.2514/3.594
19.
Bird
,
G. A.
,
1994
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Oxford University
,
New York
, Chap. 1.
20.
Liepmann
,
H. W.
, and
Roshko
,
A.
,
1957
,
Element of Gasdynamics
,
Wiley
, Chap. 4,5,12–14.
21.
Graetz
,
L.
,
1883
, “
Über die Wärmeleitungsfähigkeit von Flüssigkeiten
,”
Ann. Phys. Chem.
,
18
, pp.
79
94
.
22.
Sellars
,
J. R.
,
Tribus
,
M.
, and
Klein
,
J. S.
,
1956
, “
Heat Transfer to Laminar Flow in a Round Tube or Flat Conduit the Graetz Problem Extended
,”
ASME
,
78
, pp.
441
448
.
23.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
,
2nd ed.
,
McGraw-Hill
,
New York
, Chap. 4.
24.
Schlichting
,
H. S.
, and
Gersten
,
K.
,
1996
,
Boundary Layer Theory
,
8th ed.
,
McGraw-Hill
,
New York
, Chap. 6–9,16–18.
25.
Zukoski
,
E. E.
,
1985
, “
Afterburners
,”
Aerothermodynamics of Aircraft Engine Components
,
G. C.
Oates
, ed.,
American Institute of Aeronautics and Astronautics Inc.
,
Reston, VA
, Chap. 2.
26.
Knudsen
,
J. G.
, and
Katz
,
D. L.
,
1958
,
Fluid Dynamics and Heat Transfer
,
McGraw-Hill
,
New York
, Chap. 13.
27.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
1960
,
Transport Phenomena
,
Wiley
,
New York
, Chap. 13.
You do not currently have access to this content.