The objective of this paper is to apply combined experimental and computational modeling to investigate unsteady sheet/cloud cavitating flows. In the numerical simulations, a filter-based density corrected model (FBDCM) is introduced to regulate the turbulent eddy viscosity in both the cavitation regions on the foil and in the wake, which is shown to be critical in accurately capturing the unsteady cavity shedding process, and the corresponding velocity and vorticity dynamics. In the experiments, high-speed video and particle image velocimetry (PIV) technique are used to measure the flow velocity and vorticity fields, as well as cavitation patterns. Results are presented for a Clark-Y hydrofoil fixed at an angle of attack of α = 8 deg at a moderate Reynolds number, Re = 7 × 105, for both subcavitating and sheet/cloud cavitating conditions. The results show that for the unsteady sheet/cloud cavitating case, the formation, breakup, shedding, and collapse of the sheet/cloud cavity lead to substantial increase in turbulent velocity fluctuations in the cavitating region around the foil and in the wake, and significantly modified the wake patterns. The turbulent boundary layer thickness is found to be much thicker, and the turbulent intensities are much higher in the sheet/cloud cavitating case. Compared to the wetted case, the wake region becomes much broader and is directed toward the suction side instead of the pressure side for the sheet/cloud cavitation case. The periodic formation, breakup, shedding, and collapse of the sheet/cloud cavities, and the associated baroclinic and viscoclinic torques, are shown to be important mechanisms for vorticity production and modification.

References

References
1.
Knapp
,
R. T.
,
Daily
,
J. W.
, and
Hammitt
,
F. G.
,
1970
,
Cavitation
,
McGraw Hill
,
New York
.
2.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
, Oxford Engineering & Sciences Series 44,
Oxford University Press
,
Oxford, UK
.
3.
Joseph
,
D. D.
,
1995
, “
Cavitation in a Flowing Liquid
,”
Phys. Rev. E.
,
51
, pp.
1649
1650
.10.1103/PhysRevE.51.R1649
4.
Rood
,
E. P.
,
1991
, “
Review-Mechanisms of Cavitation Inception
,”
ASME J. Fluids Eng.
,
113
, pp.
163
175
.10.1115/1.2909476
5.
Kawanami
,
Y.
,
Kato
,
H.
,
Yamauchi
,
H.
,
Tanimura
,
M.
, and
Tagata
,
Y.
,
1997
, “
Mechanism and Control of Cloud Cavitations
,”
ASME J. Fluids Eng.
,
119
, pp.
788
794
.10.1115/1.2819499
6.
Leger
,
A. T.
, and
Ceccio
,
S. L.
,
1998
, “
Examination of the Flow Near the Leading Edge of Attached Cavitations—Part 1: Detachment of Two-Dimensional and Axisymmetric Cavities
,”
J. Fluid Mech.
,
376
, pp.
61
90
.10.1017/S0022112098002766
7.
Delange
,
D. F.
, and
Debruin
,
G. J.
,
1997
, “
Sheet Cavitation and Cloud Cavitation, Re-Entrant Jet and Three-Dimensionality
,”
Appl. Sci. Res.
,
58
, pp.
91
114
.10.1023/A:1000763130780
8.
Wang
,
G.
,
Senocak
, I
.
,
Shyy
,
W.
,
Ikohagi
,
T.
, and
Cao
,
S.
,
2001
, “
Dynamics of Attached Turbulent Cavitating Flows
,”
Prog. Aerosp. Sci.
,
37
, pp.
551
581
.10.1016/S0376-0421(01)00014-8
9.
Kubota
,
A.
,
Kato
,
H.
,
Yamaguchi
,
H.
, and
Maeda
,
M.
,
1989
, “
Unsteady Structure Measurement of Cloud Cavitation on a Foil Section Using Conditional Sampling Technique
,”
ASME J. Fluids Eng.
,
111
(
2
), pp.
204
210
.10.1115/1.3243624
10.
Li
,
X.
,
Wang
,
G.
,
Zhang
,
M.
, and
Shyy
,
W.
,
2008
, “
Structures of Supercavitating Multiphase Flows
,”
Int. J. Thermal Sci.
,
47
(
10
), pp.
1263
1275
.10.1016/j.ijthermalsci.2007.11.010
11.
Gopalan
,
S.
, and
Katz
,
J.
,
2000
, “
Flow Structure and Modeling Issues in the Closure Region of Attached Cavitations
,”
Phys. Fluids
,
12
(
4
), pp.
895
911
.10.1063/1.870344
12.
Arndt
,
R. E. A.
,
Song
,
C. C. S.
,
Kjeldsen
,
M.
, and
Keller
,
A.
,
2000
, “
Instability of Partial Cavitation: A Numerical/Experimental Approach
,”
Proceedings the of Twenty-Third Symposium on Naval Hydrodynamics
,
Valde Reuil, France
.
13.
Tseng
,
C.-C.
, and
Shyy
,
W.
,
2010
, “
Modeling for Isothermal and Cryogenic Cavitations
,”
Int. J. Heat Mass Transf.
,
53
, pp.
513
525
.10.1016/j.ijheatmasstransfer.2009.09.005
14.
Chen
,
Y.
, and
Heister
,
S. D.
,
1996
, “
Modeling Hydrodynamic Nonequilibrium in Cavitating Flows
,”
ASME J. Fluids Eng.
,
118
, pp.
172
178
.10.1115/1.2817497
15.
Delannoy
,
Y.
, and
Kueny
,
J. L.
,
1998
, “
Two Phase Flow Approach in Unsteady Cavitation Modeling
,”
Proceedings of the ASME Cavitation and Multiphase Flow Forum
,
Grenoble, France
.
16.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1992
, “
A New Modeling of Cavitating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,”
J. Fluid Mech.
,
240
, pp.
59
96
.10.1017/S002211209200003X
17.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
,
2000
, “
A Preconditioned Navier–Stokes Method for Two Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
, pp.
849
875
.10.1016/S0045-7930(99)00039-0
18.
Merkle
,
C. L.
,
Feng
,
J.
, and
Buelow
,
P. E. O.
,
1998
, “
Computational Modeling of Sheet Cavitations
,”
Proceedings of Third International Symposium on Cavitation
,
Grenoble, France
.
19.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
20.
Senocak
, I
.
, and
Shyy
,
W.
,
2004
, “
Interfacial Dynamics-Based Modeling of Turbulent Cavitating Flows—Part-1: Model Development and Steady-State Computations
,”
Int. J. Numer. Methods Fluids
,
44
, pp.
975
995
.10.1002/fld.692
21.
Senocak
, I
.
, and
Shyy
,
W.
,
2002
, “
Evaluation of Cavitation Models for Navier–Stokes Computations
,”
Proceedings of the FEDSM’02
,
ASME 2002 Fluids Engineering Division Summer Meeting Montreal
,
Quebec, Canada
, July 14–18.
22.
Ducoin
,
A.
,
Huang
,
B.
, and
Young
,
Y. L.
,
2012
, “
Numerical Modeling of Unsteady Cavitating Flows Around a Stationary Hydrofoil
,”
Int. J. Rotating Mach.
,
2012
, p.
215678
.
23.
Huang
,
B.
,
Ducoin
,
A.
, and
Young
,
Y. L.
,
2012
, “
Evaluation of Cavitation Models for Prediction of Transient Cavitating Flows around a Pitching Hydrofoil
,”
Proceedings of 8th International Symposium on Cavitation
,
Singapore
.
24.
Reboud
,
J. L.
,
Stutz
,
B.
, and
Coutier-Delgosha
,
O.
,
1998
, “
Two Phase Flow Structure of Cavitation: Experiment and Modeling of Unsteady Effects
,”
Proceedings of the Third Symposium on Cavitation
,
Grenoble, France
.
25.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitations
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.10.1115/1.1524584
26.
Wang
,
G.
, and
Ostoja-Starzewski
,
M.
,
2007
, “
Large Eddy Simulation of a Sheet/Cloud Cavitation on a NACA0015 Hydrofoil
,”
Appl. Math. Modelling
,
31
(
3
), pp.
417
447
.10.1016/j.apm.2005.11.019
27.
Johansen
,
S. T.
,
Wu
,
J.
, and
Shyy
,
W.
,
2004
, “
Filter-Based Unsteady RANS Computations
,”
Int. J. Heat Fluid Flow
,
25
(
1
), pp.
10
21
.10.1016/j.ijheatfluidflow.2003.10.005
28.
Wu
,
J.
,
Wang
,
G.
, and
Shyy
,
W.
,
2005
, “
Time-Dependent Turbulent Cavitating Flow Computations With Interfacial Transport and Filter Based Models
,”
Int. J. Numer. Methods Fluids
,
49
, pp.
739
761
.10.1002/fld.1047
29.
Kim
,
S.
, and
Brewton
,
S.
,
2008
, “
A Multiphase Approach to Turbulent Cavitating Flows
,”
Proceedings of 27th Symposium on Naval Hydrodynamics
,
Seoul, Korea
.
30.
Wosnik
,
M.
, and
Arndt
,
R. E. A.
,
2006
, “
Measurements in High Void-Fraction Bubbly Wakes Created by Ventilated Supercavitation
,”
Proceedings of the 6th International Symposium on Cavitation, Wageningen
,
The Netherlands
.
31.
Zwart
,
P.
,
Gerber
,
A.
, and
Belamri
,
T.
,
2004
, “
A two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Proceedings of the Fifth International Conference on Multiphase Flow
,
Yokohama, Japan
.
32.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
.10.1016/0045-7825(74)90029-2
33.
Zhang
,
M.
,
Song
,
X.
, and
Wang
,
G.
,
2006
, “
Design and Application of Cavitation Flow Image Programs
,”
Trans. Beijing Inst. Technol.
,
26
, pp.
983
986
.
34.
Foeth
,
E. J.
,
2008
, “
The structure of Three-Dimensional Sheet Cavitation
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
35.
Foeth
,
E. J.
,
Van Terwisga
,
T.
, and
Van Doone
,
C.
,
2008
, “
On the Collapse Structure of an Attached Cavity on a Three-Dimensional Hydrofoil
,”
ASME J. Fluids Eng.
,
130
, p.
071303
.10.1115/1.2928345
36.
Laberteaux
,
K. R.
, and
Ceccio
,
S. L.
,
2001
, “
Partial Cavity Flows Part 1: Cavities Forming in Models Without Spanwise Variation
,”
J. Fluid Mech.
,
431
, pp.
1
41
.10.1017/S0022112000002925
37.
Stutz
,
B.
, and
Legoupil
,
S.
,
2003
, “
X-Ray Measurements Within Unsteady Cavitations
,”
Exp. Fluids
,
35
, pp.
130
138
.10.1007/s00348-003-0622-0
38.
Coutier-Delgosha
,
O.
,
Devillers
,
J.-F.
,
Pichon
,
T.
,
Vabre
,
A.
,
Woo
,
R.
, and
Legoupil
,
S.
,
2006
, “
Internal Structure and Dynamics of Sheet Cavitations
,”
Phys. Fluids
,
18
, p.
017103
.10.1063/1.2149882
39.
Ganesh
,
H.
,
Makiharju
,
S.
,
Paik
,
B.-G.
, and
Ceccio
,
S. L.
,
2012
, “
Investigation of Partial Cavitation and Its Transition to Cloud Cavitation Using Time Resolved X-Ray Densitometry
,”
Proceedings of the Twenty-Ninth Symposium on Naval Hydrodynamics
,
Gothenburg, Sweden
.
You do not currently have access to this content.